mathomatic/diff.c

894 lines
23 KiB
C

/*
* Mathomatic symbolic differentiation routines and related commands.
*
* Copyright (C) 1987-2012 George Gesslein II.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
The chief copyright holder can be contacted at gesslein@mathomatic.org, or
George Gesslein II, P.O. Box 224, Lansing, NY 14882-0224 USA.
*/
#include "includes.h"
static int d_recurse(token_type *equation, int *np, int loc, int level, long v);
/*
* Compute the derivative of an equation side, with respect to variable "v",
* using the fast, rule-based transform method.
* This is done by recursively applying the proper rule of differentiation
* for each operator encountered.
*
* Return true if successful.
* The result must be simplified by the caller.
*/
int
differentiate(equation, np, v)
token_type *equation; /* pointer to source and destination equation side */
int *np; /* pointer to the length of the equation side */
long v; /* differentiation variable */
{
int i;
organize(equation, np);
/* First put every times and divide on a level by itself. */
for (i = 1; i < *np; i += 2) {
switch (equation[i].token.operatr) {
case TIMES:
case DIVIDE:
binary_parenthesize(equation, *np, i);
}
}
return d_recurse(equation, np, 0, 1, v);
}
/*
* Recursive differentiation routine.
*
* Symbolically differentiate expression in "equation"
* (which is a standard equation side) starting at "loc".
* The current level of parentheses is "level" and
* do the differentiation with respect to variable "v".
*
* Return true if successful.
* Return false if it is beyond this program's capabilities or an error was encountered.
*/
static int
d_recurse(equation, np, loc, level, v)
token_type *equation;
int *np, loc, level;
long v;
{
int i, j;
int n;
int op;
int oploc, endloc;
complexs c;
if (equation[loc].level < level) {
/* First differentiate if it is a single variable or constant. */
/* If it is the specified variable, change it to the constant 1, */
/* otherwise change it to the constant 0. */
if (equation[loc].kind == VARIABLE
&& ((v == MATCH_ANY && (equation[loc].token.variable & VAR_MASK) > SIGN)
|| equation[loc].token.variable == v)) {
equation[loc].kind = CONSTANT;
equation[loc].token.constant = 1.0;
} else {
equation[loc].kind = CONSTANT;
equation[loc].token.constant = 0.0;
}
return true;
}
for (op = 0, oploc = endloc = loc + 1; endloc < *np && equation[endloc].level >= level; endloc += 2) {
if (equation[endloc].level == level) {
switch (op) {
case 0:
case PLUS:
case MINUS:
break;
default:
/* Oops. More than one operator on the same level in this expression. */
error_bug("Internal error in d_recurse(): differentiating with unparenthesized operators is not allowed.");
return false;
}
op = equation[endloc].token.operatr;
oploc = endloc;
}
}
switch (op) {
case 0:
case PLUS:
case MINUS:
break;
case TIMES:
goto d_times;
case DIVIDE:
goto d_divide;
case POWER:
goto d_power;
default:
/* Differentiate an unsupported operator. */
/* This is possible if the expression doesn't contain the specified variable. */
/* In that case, the expression is replaced with "0", otherwise return false. */
for (i = loc; i < endloc; i += 2) {
if (equation[i].kind == VARIABLE
&& ((v == MATCH_ANY && (equation[i].token.variable & VAR_MASK) > SIGN)
|| equation[i].token.variable == v)) {
return false;
}
}
blt(&equation[loc+1], &equation[endloc], (*np - endloc) * sizeof(token_type));
*np -= (endloc - (loc + 1));
equation[loc].level = level;
equation[loc].kind = CONSTANT;
equation[loc].token.constant = 0.0;
return true;
}
/* Differentiate PLUS and MINUS operators. */
/* Use addition rule: d(u+v) = d(u) + d(v), */
/* where "d()" is the derivative function */
/* and "u" and "v" are expressions. */
for (i = loc; i < *np && equation[i].level >= level;) {
if (equation[i].kind != OPERATOR) {
if (!d_recurse(equation, np, i, level + 1, v))
return false;
i++;
for (; i < *np && equation[i].level > level; i += 2)
;
continue;
}
i++;
}
return true;
d_times:
/* Differentiate TIMES operator. */
/* Use product rule: d(u*v) = u*d(v) + v*d(u). */
if (*np + 1 + (endloc - loc) > n_tokens) {
error_huge();
}
for (i = loc; i < endloc; i++)
equation[i].level++;
blt(&equation[endloc+1], &equation[loc], (*np - loc) * sizeof(token_type));
*np += 1 + (endloc - loc);
equation[endloc].level = level;
equation[endloc].kind = OPERATOR;
equation[endloc].token.operatr = PLUS;
if (!d_recurse(equation, np, endloc + (oploc - loc) + 2, level + 2, v))
return false;
return(d_recurse(equation, np, loc, level + 2, v));
d_divide:
/* Differentiate DIVIDE operator. */
/* Use quotient rule: d(u/v) = (v*d(u) - u*d(v))/v^2. */
if (*np + 3 + (endloc - loc) + (endloc - oploc) > n_tokens) {
error_huge();
}
for (i = loc; i < endloc; i++)
equation[i].level += 2;
equation[oploc].token.operatr = TIMES;
j = 1 + (endloc - loc);
blt(&equation[endloc+1], &equation[loc], (*np - loc) * sizeof(token_type));
*np += j;
equation[endloc].level = level + 1;
equation[endloc].kind = OPERATOR;
equation[endloc].token.operatr = MINUS;
j += endloc;
blt(&equation[j+2+(endloc-oploc)], &equation[j], (*np - j) * sizeof(token_type));
*np += 2 + (endloc - oploc);
equation[j].level = level;
equation[j].kind = OPERATOR;
equation[j].token.operatr = DIVIDE;
blt(&equation[j+1], &equation[oploc+1], (endloc - (oploc + 1)) * sizeof(token_type));
j += endloc - oploc;
equation[j].level = level + 1;
equation[j].kind = OPERATOR;
equation[j].token.operatr = POWER;
j++;
equation[j].level = level + 1;
equation[j].kind = CONSTANT;
equation[j].token.constant = 2.0;
if (!d_recurse(equation, np, endloc + (oploc - loc) + 2, level + 3, v))
return false;
return(d_recurse(equation, np, loc, level + 3, v));
d_power:
/* Differentiate POWER operator. */
/* Since we don't have symbolic logarithms, do all we can without them. */
for (i = oploc; i < endloc; i++) {
if (equation[i].kind == VARIABLE
&& ((v == MATCH_ANY && (equation[i].token.variable & VAR_MASK) > SIGN)
|| equation[i].token.variable == v)) {
if (parse_complex(&equation[loc], oploc - loc, &c)) {
c = complex_log(c);
n = (endloc - oploc) + 6;
if (*np + n > n_tokens) {
error_huge();
}
blt(&equation[endloc+n], &equation[endloc], (*np - endloc) * sizeof(token_type));
*np += n;
n = endloc;
equation[n].level = level;
equation[n].kind = OPERATOR;
equation[n].token.operatr = TIMES;
n++;
equation[n].level = level + 1;
equation[n].kind = CONSTANT;
equation[n].token.constant = c.re;
n++;
equation[n].level = level + 1;
equation[n].kind = OPERATOR;
equation[n].token.operatr = PLUS;
n++;
equation[n].level = level + 2;
equation[n].kind = CONSTANT;
equation[n].token.constant = c.im;
n++;
equation[n].level = level + 2;
equation[n].kind = OPERATOR;
equation[n].token.operatr = TIMES;
n++;
equation[n].level = level + 2;
equation[n].kind = VARIABLE;
equation[n].token.variable = IMAGINARY;
n++;
equation[n].level = level;
equation[n].kind = OPERATOR;
equation[n].token.operatr = TIMES;
n++;
blt(&equation[n], &equation[oploc+1], (endloc - (oploc + 1)) * sizeof(token_type));
for (i = loc; i < endloc; i++) {
equation[i].level++;
}
return(d_recurse(equation, np, n, level + 1, v));
}
return false;
}
}
blt(scratch, &equation[oploc+1], (endloc - (oploc + 1)) * sizeof(token_type));
n = endloc - (oploc + 1);
scratch[n].level = level;
scratch[n].kind = OPERATOR;
scratch[n].token.operatr = TIMES;
n++;
if (n + (endloc - loc) + 2 > n_tokens) {
error_huge();
}
blt(&scratch[n], &equation[loc], (endloc - loc) * sizeof(token_type));
i = n;
n += oploc + 1 - loc;
for (; i < n; i++)
scratch[i].level++;
n += endloc - (oploc + 1);
for (; i < n; i++)
scratch[i].level += 2;
scratch[n].level = level + 2;
scratch[n].kind = OPERATOR;
scratch[n].token.operatr = MINUS;
n++;
scratch[n].level = level + 2;
scratch[n].kind = CONSTANT;
scratch[n].token.constant = 1.0;
n++;
if (n + (oploc - loc) + 1 > n_tokens) {
error_huge();
}
scratch[n].level = level;
scratch[n].kind = OPERATOR;
scratch[n].token.operatr = TIMES;
n++;
j = n;
blt(&scratch[n], &equation[loc], (oploc - loc) * sizeof(token_type));
n += oploc - loc;
if (*np - (endloc - loc) + n > n_tokens) {
error_huge();
}
blt(&equation[loc+n], &equation[endloc], (*np - endloc) * sizeof(token_type));
*np += loc + n - endloc;
blt(&equation[loc], scratch, n * sizeof(token_type));
return(d_recurse(equation, np, loc + j, level + 1, v));
}
/*
* The derivative command.
*/
int
derivative_cmd(cp)
char *cp;
{
int i, len;
long v = 0; /* Mathomatic variable */
long l1, order = 1;
token_type *source, *dest;
int n1, *nps, *np;
int simplify_flag = true, solved;
if (current_not_defined()) {
return false;
}
solved = solved_equation(cur_equation);
if (strcmp_tospace(cp, "nosimplify") == 0) {
simplify_flag = false;
cp = skip_param(cp);
}
i = next_espace();
if (n_rhs[cur_equation]) {
if (!solved) {
warning(_("Not a solved equation. Only the RHS will be differentiated."));
}
source = rhs[cur_equation];
nps = &n_rhs[cur_equation];
dest = rhs[i];
np = &n_rhs[i];
} else {
source = lhs[cur_equation];
nps = &n_lhs[cur_equation];
dest = lhs[i];
np = &n_lhs[i];
}
/* parse the command line or prompt: */
if (*cp) {
if (is_all(cp)) {
cp = skip_param(cp);
v = MATCH_ANY;
} else {
if (isvarchar(*cp)) {
cp = parse_var2(&v, cp);
if (cp == NULL) {
return false;
}
}
}
if (*cp) {
order = decstrtol(cp, &cp);
}
if (order <= 0) {
error(_("The order must be a positive integer."));
return false;
}
if (extra_characters(cp))
return false;
}
if (no_vars(source, *nps, &v)) {
warning(_("Current expression contains no variables; the derivative will be zero."));
} else {
if (v == 0) {
if (!prompt_var(&v)) {
return false;
}
}
if (v && v != MATCH_ANY && !found_var(source, *nps, v)) {
warning(_("Specified variable not found; the derivative will be zero."));
}
}
if (v == 0) {
error(_("No differentiation variable specified."));
return false;
}
#if !SILENT
list_var(v, 0);
if (n_rhs[cur_equation]) {
fprintf(gfp, _("Differentiating the RHS with respect to %s"), var_str);
} else {
fprintf(gfp, _("Differentiating with respect to %s"), var_str);
}
if (order != 1) {
fprintf(gfp, _(" %ld times"), order);
}
if (simplify_flag) {
fprintf(gfp, _(" and simplifying"));
} else {
fprintf(gfp, _(" and not simplifying"));
}
fprintf(gfp, "...\n");
#endif
blt(dest, source, *nps * sizeof(token_type));
n1 = *nps;
/* do the actual differentiating and simplifying: */
for (l1 = 0; l1 < order; l1++) {
if (order != 1) {
if (n1 == 1 && dest[0].kind == CONSTANT && dest[0].token.constant == 0.0) {
fprintf(gfp, _("0 reached after %ld derivatives taken.\n"), l1);
order = l1;
break;
}
}
if (!differentiate(dest, &n1, v)) {
error(_("Differentiation failed."));
return false;
}
if (simplify_flag) {
simpa_repeat_side(dest, &n1, true, false);
} else {
elim_loop(dest, &n1);
}
}
*np = n1;
if (n_rhs[cur_equation]) {
blt(lhs[i], lhs[cur_equation], n_lhs[cur_equation] * sizeof(token_type));
n_lhs[i] = n_lhs[cur_equation];
if (solved && isvarchar('\'')) {
len = list_var(lhs[i][0].token.variable, 0);
for (l1 = 0; l1 < order && len < (MAX_VAR_LEN - 1); l1++) {
var_str[len++] = '\'';
}
var_str[len] = '\0';
if (l1 == order) {
parse_var(&lhs[i][0].token.variable, var_str);
}
}
}
cur_equation = i;
return return_result(cur_equation);
}
/*
* The extrema command.
*/
int
extrema_cmd(cp)
char *cp;
{
int i;
long v = 0; /* Mathomatic variable */
long l1, order = 1;
token_type want;
token_type *source;
int n;
if (current_not_defined()) {
return false;
}
i = next_espace();
if (n_rhs[cur_equation]) {
if (!solved_equation(cur_equation)) {
error(_("The current equation is not solved for a variable."));
return false;
}
source = rhs[cur_equation];
n = n_rhs[cur_equation];
} else {
source = lhs[cur_equation];
n = n_lhs[cur_equation];
}
if (*cp) {
if (isvarchar(*cp)) {
cp = parse_var2(&v, cp);
if (cp == NULL) {
return false;
}
}
if (*cp) {
order = decstrtol(cp, &cp);
}
if (order <= 0) {
error(_("The order must be a positive integer."));
return false;
}
if (extra_characters(cp))
return false;
}
show_usage = false;
if (no_vars(source, n, &v)) {
error(_("Current expression contains no variables."));
return false;
}
if (v == 0) {
if (!prompt_var(&v)) {
return false;
}
}
if (!found_var(source, n, v)) {
error(_("Specified variable not found; the derivative would be zero."));
return false;
}
blt(rhs[i], source, n * sizeof(token_type));
/* take derivatives with respect to the specified variable and simplify: */
for (l1 = 0; l1 < order; l1++) {
if (!differentiate(rhs[i], &n, v)) {
error(_("Differentiation failed."));
return false;
}
simpa_repeat_side(rhs[i], &n, true, false);
}
if (!found_var(rhs[i], n, v)) {
error(_("There are no solutions."));
return false;
}
n_rhs[i] = n;
/* set equal to zero: */
n_lhs[i] = 1;
lhs[i][0] = zero_token;
cur_equation = i;
/* lastly, solve for the specified variable and simplify: */
want.level = 1;
want.kind = VARIABLE;
want.token.variable = v;
if (solve_sub(&want, 1, lhs[i], &n_lhs[i], rhs[i], &n_rhs[i]) <= 0) {
error(_("Solve failed."));
return false;
}
simpa_repeat_side(rhs[i], &n_rhs[i], false, false);
return return_result(cur_equation);
}
/*
* The taylor command.
*/
int
taylor_cmd(cp)
char *cp;
{
long v = 0; /* Mathomatic variable */
int i, j, k, i1;
int level;
long l1, n, order = -1L;
double d;
char *cp_start, *cp1 = NULL, buf[MAX_CMD_LEN];
int our;
int our_nlhs, our_nrhs;
token_type *ep, *source, *dest;
int n1, *nps, *np;
int simplify_flag = true;
cp_start = cp;
if (current_not_defined()) {
return false;
}
if (strcmp_tospace(cp, "nosimplify") == 0) {
simplify_flag = false;
cp = skip_param(cp);
}
i = next_espace();
blt(lhs[i], lhs[cur_equation], n_lhs[cur_equation] * sizeof(token_type));
n_lhs[i] = n_lhs[cur_equation];
n_rhs[i] = 0;
our = alloc_next_espace();
n_lhs[i] = 0;
if (our < 0) {
error(_("Out of free equation spaces."));
show_usage = false;
return false;
}
if (n_rhs[cur_equation]) {
source = rhs[cur_equation];
nps = &n_rhs[cur_equation];
dest = rhs[i];
np = &n_rhs[i];
} else {
source = lhs[cur_equation];
nps = &n_lhs[cur_equation];
dest = lhs[i];
np = &n_lhs[i];
}
if (*cp && isvarchar(*cp)) {
cp = parse_var2(&v, cp);
if (cp == NULL) {
return false;
}
}
if (*cp) {
order = decstrtol(cp, &cp1);
if (cp1 != skip_param(cp) || order < 0) {
error(_("Positive integer required for order."));
return false;
}
cp = cp1;
}
show_usage = false;
no_vars(source, *nps, &v);
if (v == 0) {
if (!prompt_var(&v)) {
return false;
}
}
if (!found_var(source, *nps, v)) {
warning(_("Specified differentiation variable not found; the derivative will be 0."));
}
blt(rhs[our], source, *nps * sizeof(token_type));
our_nrhs = *nps;
/* Simplify and take the first derivative: */
uf_simp(rhs[our], &our_nrhs);
if (!differentiate(rhs[our], &our_nrhs, v)) {
error(_("Differentiation failed."));
return false;
}
if (*cp) {
input_column += (cp - cp_start);
cp = parse_expr(lhs[our], &our_nlhs, cp, true);
if (cp == NULL || extra_characters(cp) || our_nlhs <= 0) {
show_usage = true;
return false;
}
} else {
#if !SILENT
list_var(v, 0);
printf(_("Taylor series expansion around %s = point.\n"), var_str);
#endif
my_strlcpy(prompt_str, _("Enter point (an expression; usually 0): "), sizeof(prompt_str));
if (!get_expr(lhs[our], &our_nlhs)) {
return false;
}
}
if (order < 0) {
my_strlcpy(prompt_str, _("Enter order (number of derivatives to take): "), sizeof(prompt_str));
if ((cp1 = get_string(buf, sizeof(buf))) == NULL)
return false;
if (*cp1) {
cp = NULL;
order = decstrtol(cp1, &cp);
if (cp == NULL || *cp || order < 0) {
error(_("Positive integer required for order."));
return false;
}
} else {
order = LONG_MAX - 1;
#if !SILENT
printf(_("Derivatives will be taken until they reach zero...\n"));
#endif
}
}
#if !SILENT
fprintf(gfp, _("Taylor series"));
if (n_rhs[cur_equation]) {
fprintf(gfp, _(" of the RHS"));
}
list_var(v, 0);
fprintf(gfp, _(" with respect to %s"), var_str);
if (simplify_flag) {
fprintf(gfp, _(", simplified"));
} else {
fprintf(gfp, _(", not simplified"));
}
fprintf(gfp, "...\n");
#endif
n = 0;
i1 = 0;
blt(dest, source, *nps * sizeof(token_type));
n1 = *nps;
loop_again:
for (k = i1; k < n1; k += 2) {
if (dest[k].kind == VARIABLE && dest[k].token.variable == v) {
level = dest[k].level;
if ((n1 + our_nlhs - 1) > n_tokens)
error_huge();
blt(&dest[k+our_nlhs], &dest[k+1], (n1 - (k + 1)) * sizeof(token_type));
n1 += our_nlhs - 1;
j = k;
blt(&dest[k], lhs[our], our_nlhs * sizeof(token_type));
k += our_nlhs;
for (; j < k; j++)
dest[j].level += level;
k--;
}
}
if ((n1 + our_nlhs + 7) > n_tokens)
error_huge();
for (k = i1; k < n1; k++)
dest[k].level++;
ep = &dest[n1];
ep->level = 1;
ep->kind = OPERATOR;
ep->token.operatr = TIMES;
ep++;
ep->level = 3;
ep->kind = VARIABLE;
ep->token.variable = v;
ep++;
ep->level = 3;
ep->kind = OPERATOR;
ep->token.operatr = MINUS;
n1 += 3;
j = n1;
blt(&dest[n1], lhs[our], our_nlhs * sizeof(token_type));
n1 += our_nlhs;
for (; j < n1; j++)
dest[j].level += 3;
ep = &dest[n1];
ep->level = 2;
ep->kind = OPERATOR;
ep->token.operatr = POWER;
ep++;
ep->level = 2;
ep->kind = CONSTANT;
ep->token.constant = n;
ep++;
ep->level = 1;
ep->kind = OPERATOR;
ep->token.operatr = DIVIDE;
ep++;
for (d = 1.0, l1 = 2; l1 <= n; l1++)
d *= l1;
ep->level = 1;
ep->kind = CONSTANT;
ep->token.constant = d;
n1 += 4;
for (; i1 < n1; i1++)
dest[i1].level++;
if (simplify_flag) {
uf_simp(dest, &n1);
}
side_debug(1, dest, n1);
if (exp_contains_infinity(dest, n1)) {
error(_("Result invalid because it contains infinity or NaN."));
return false;
}
if (n < order) {
if (n > 0) {
if (!differentiate(rhs[our], &our_nrhs, v)) {
error(_("Differentiation failed."));
return false;
}
}
/* symb_flag = symblify; */
simpa_repeat_side(rhs[our], &our_nrhs, true, false /* was true */);
/* symb_flag = false; */
if (our_nrhs != 1 || rhs[our][0].kind != CONSTANT || rhs[our][0].token.constant != 0.0) {
i1 = n1;
if ((i1 + 1 + our_nrhs) > n_tokens)
error_huge();
for (j = 0; j < i1; j++)
dest[j].level++;
dest[i1].level = 1;
dest[i1].kind = OPERATOR;
dest[i1].token.operatr = PLUS;
i1++;
blt(&dest[i1], rhs[our], our_nrhs * sizeof(token_type));
n1 = i1 + our_nrhs;
n++;
goto loop_again;
}
}
#if !SILENT
fprintf(gfp, _("%ld non-zero derivative%s applied.\n"), n, (n == 1) ? "" : "s");
#endif
if (n_rhs[cur_equation]) {
n_lhs[i] = n_lhs[cur_equation];
}
*np = n1;
cur_equation = i;
return return_result(cur_equation);
}
/*
* The limit command.
*/
int
limit_cmd(cp)
char *cp;
{
int i;
long v = 0; /* Mathomatic variable */
token_type solved_v, want;
char *cp_start;
cp_start = cp;
if (current_not_defined()) {
return false;
}
i = next_espace();
if (n_rhs[cur_equation] == 0) {
/* make expression into an equation: */
blt(rhs[cur_equation], lhs[cur_equation], n_lhs[cur_equation] * sizeof(token_type));
n_rhs[cur_equation] = n_lhs[cur_equation];
n_lhs[cur_equation] = 1;
lhs[cur_equation][0].level = 1;
lhs[cur_equation][0].kind = VARIABLE;
parse_var(&lhs[cur_equation][0].token.variable, "limit");
}
if (!solved_equation(cur_equation)) {
error(_("The current equation is not solved for a variable."));
return false;
}
solved_v = lhs[cur_equation][0];
/* parse the command line or prompt: */
if (*cp) {
cp = parse_var2(&v, cp);
if (cp == NULL) {
return false;
}
}
show_usage = false;
if (no_vars(rhs[cur_equation], n_rhs[cur_equation], &v)) {
warning(_("Current expression contains no variables; that is the answer."));
return return_result(cur_equation);
}
if (v == 0) {
if (!prompt_var(&v)) {
return false;
}
}
if (!found_var(rhs[cur_equation], n_rhs[cur_equation], v)) {
warning(_("Limit variable not found; answer is original expression."));
return return_result(cur_equation);
}
if (*cp == '=') {
cp = skip_space(cp + 1);
}
if (*cp) {
input_column += (cp - cp_start);
cp = parse_expr(tes, &n_tes, cp, true);
if (cp == NULL || extra_characters(cp) || n_tes <= 0) {
show_usage = true;
return false;
}
} else {
list_var(v, 0);
snprintf(prompt_str, sizeof(prompt_str), _("as %s goes to: "), var_str);
if (!get_expr(tes, &n_tes)) {
return false;
}
}
simp_loop(tes, &n_tes);
#if !SILENT
list_var(v, 0);
fprintf(gfp, _("Taking the limit as %s goes to "), var_str);
list_proc(tes, n_tes, false);
fprintf(gfp, "\n");
#endif
/* copy the current equation to a new equation space, then simplify and work on the copy: */
copy_espace(cur_equation, i);
simpa_side(rhs[i], &n_rhs[i], false, false);
/* see if the limit expression is positive infinity: */
if (n_tes == 1 && tes[0].kind == CONSTANT && tes[0].token.constant == INFINITY) {
/* To take the limit to positive infinity, */
/* replace infinity with zero and replace the limit variable with its reciprocal: */
n_tes = 1;
tes[0] = zero_token;
tlhs[0] = one_token;
tlhs[1].level = 1;
tlhs[1].kind = OPERATOR;
tlhs[1].token.operatr = DIVIDE;
tlhs[2].level = 1;
tlhs[2].kind = VARIABLE;
tlhs[2].token.variable = v;
n_tlhs = 3;
subst_var_with_exp(rhs[i], &n_rhs[i], tlhs, n_tlhs, v);
}
/* General limit taking, solve for the limit variable: */
debug_string(0, _("Solving..."));
want.level = 1;
want.kind = VARIABLE;
want.token.variable = v;
if (solve_sub(&want, 1, lhs[i], &n_lhs[i], rhs[i], &n_rhs[i]) <= 0) {
error(_("Can't take the limit because solve failed."));
return false;
}
/* replace the limit variable (LHS) with the limit expression: */
blt(lhs[i], tes, n_tes * sizeof(token_type));
n_lhs[i] = n_tes;
/* simplify the RHS: */
symb_flag = symblify;
simpa_side(rhs[i], &n_rhs[i], false, false);
symb_flag = false;
if (exp_contains_nan(rhs[i], n_rhs[i])) {
error(_("Unable to take limit; result contains NaN (Not a Number)."));
return false;
}
/* solve back for the original variable: */
if (solve_sub(&solved_v, 1, lhs[i], &n_lhs[i], rhs[i], &n_rhs[i]) <= 0) {
error(_("Can't take the limit because solve failed."));
return false;
}
/* simplify before returning the result: */
simpa_side(rhs[i], &n_rhs[i], false, false);
if (exp_contains_nan(rhs[i], n_rhs[i])) {
error(_("Unable to take limit; result contains NaN (Not a Number)."));
return false;
}
return return_result(i);
}