/* * Mathomatic symbolic differentiation routines and related commands. * * Copyright (C) 1987-2012 George Gesslein II. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA The chief copyright holder can be contacted at gesslein@mathomatic.org, or George Gesslein II, P.O. Box 224, Lansing, NY 14882-0224 USA. */ #include "includes.h" static int d_recurse(token_type *equation, int *np, int loc, int level, long v); /* * Compute the derivative of an equation side, with respect to variable "v", * using the fast, rule-based transform method. * This is done by recursively applying the proper rule of differentiation * for each operator encountered. * * Return true if successful. * The result must be simplified by the caller. */ int differentiate(equation, np, v) token_type *equation; /* pointer to source and destination equation side */ int *np; /* pointer to the length of the equation side */ long v; /* differentiation variable */ { int i; organize(equation, np); /* First put every times and divide on a level by itself. */ for (i = 1; i < *np; i += 2) { switch (equation[i].token.operatr) { case TIMES: case DIVIDE: binary_parenthesize(equation, *np, i); } } return d_recurse(equation, np, 0, 1, v); } /* * Recursive differentiation routine. * * Symbolically differentiate expression in "equation" * (which is a standard equation side) starting at "loc". * The current level of parentheses is "level" and * do the differentiation with respect to variable "v". * * Return true if successful. * Return false if it is beyond this program's capabilities or an error was encountered. */ static int d_recurse(equation, np, loc, level, v) token_type *equation; int *np, loc, level; long v; { int i, j; int n; int op; int oploc, endloc; complexs c; if (equation[loc].level < level) { /* First differentiate if it is a single variable or constant. */ /* If it is the specified variable, change it to the constant 1, */ /* otherwise change it to the constant 0. */ if (equation[loc].kind == VARIABLE && ((v == MATCH_ANY && (equation[loc].token.variable & VAR_MASK) > SIGN) || equation[loc].token.variable == v)) { equation[loc].kind = CONSTANT; equation[loc].token.constant = 1.0; } else { equation[loc].kind = CONSTANT; equation[loc].token.constant = 0.0; } return true; } for (op = 0, oploc = endloc = loc + 1; endloc < *np && equation[endloc].level >= level; endloc += 2) { if (equation[endloc].level == level) { switch (op) { case 0: case PLUS: case MINUS: break; default: /* Oops. More than one operator on the same level in this expression. */ error_bug("Internal error in d_recurse(): differentiating with unparenthesized operators is not allowed."); return false; } op = equation[endloc].token.operatr; oploc = endloc; } } switch (op) { case 0: case PLUS: case MINUS: break; case TIMES: goto d_times; case DIVIDE: goto d_divide; case POWER: goto d_power; default: /* Differentiate an unsupported operator. */ /* This is possible if the expression doesn't contain the specified variable. */ /* In that case, the expression is replaced with "0", otherwise return false. */ for (i = loc; i < endloc; i += 2) { if (equation[i].kind == VARIABLE && ((v == MATCH_ANY && (equation[i].token.variable & VAR_MASK) > SIGN) || equation[i].token.variable == v)) { return false; } } blt(&equation[loc+1], &equation[endloc], (*np - endloc) * sizeof(token_type)); *np -= (endloc - (loc + 1)); equation[loc].level = level; equation[loc].kind = CONSTANT; equation[loc].token.constant = 0.0; return true; } /* Differentiate PLUS and MINUS operators. */ /* Use addition rule: d(u+v) = d(u) + d(v), */ /* where "d()" is the derivative function */ /* and "u" and "v" are expressions. */ for (i = loc; i < *np && equation[i].level >= level;) { if (equation[i].kind != OPERATOR) { if (!d_recurse(equation, np, i, level + 1, v)) return false; i++; for (; i < *np && equation[i].level > level; i += 2) ; continue; } i++; } return true; d_times: /* Differentiate TIMES operator. */ /* Use product rule: d(u*v) = u*d(v) + v*d(u). */ if (*np + 1 + (endloc - loc) > n_tokens) { error_huge(); } for (i = loc; i < endloc; i++) equation[i].level++; blt(&equation[endloc+1], &equation[loc], (*np - loc) * sizeof(token_type)); *np += 1 + (endloc - loc); equation[endloc].level = level; equation[endloc].kind = OPERATOR; equation[endloc].token.operatr = PLUS; if (!d_recurse(equation, np, endloc + (oploc - loc) + 2, level + 2, v)) return false; return(d_recurse(equation, np, loc, level + 2, v)); d_divide: /* Differentiate DIVIDE operator. */ /* Use quotient rule: d(u/v) = (v*d(u) - u*d(v))/v^2. */ if (*np + 3 + (endloc - loc) + (endloc - oploc) > n_tokens) { error_huge(); } for (i = loc; i < endloc; i++) equation[i].level += 2; equation[oploc].token.operatr = TIMES; j = 1 + (endloc - loc); blt(&equation[endloc+1], &equation[loc], (*np - loc) * sizeof(token_type)); *np += j; equation[endloc].level = level + 1; equation[endloc].kind = OPERATOR; equation[endloc].token.operatr = MINUS; j += endloc; blt(&equation[j+2+(endloc-oploc)], &equation[j], (*np - j) * sizeof(token_type)); *np += 2 + (endloc - oploc); equation[j].level = level; equation[j].kind = OPERATOR; equation[j].token.operatr = DIVIDE; blt(&equation[j+1], &equation[oploc+1], (endloc - (oploc + 1)) * sizeof(token_type)); j += endloc - oploc; equation[j].level = level + 1; equation[j].kind = OPERATOR; equation[j].token.operatr = POWER; j++; equation[j].level = level + 1; equation[j].kind = CONSTANT; equation[j].token.constant = 2.0; if (!d_recurse(equation, np, endloc + (oploc - loc) + 2, level + 3, v)) return false; return(d_recurse(equation, np, loc, level + 3, v)); d_power: /* Differentiate POWER operator. */ /* Since we don't have symbolic logarithms, do all we can without them. */ for (i = oploc; i < endloc; i++) { if (equation[i].kind == VARIABLE && ((v == MATCH_ANY && (equation[i].token.variable & VAR_MASK) > SIGN) || equation[i].token.variable == v)) { if (parse_complex(&equation[loc], oploc - loc, &c)) { c = complex_log(c); n = (endloc - oploc) + 6; if (*np + n > n_tokens) { error_huge(); } blt(&equation[endloc+n], &equation[endloc], (*np - endloc) * sizeof(token_type)); *np += n; n = endloc; equation[n].level = level; equation[n].kind = OPERATOR; equation[n].token.operatr = TIMES; n++; equation[n].level = level + 1; equation[n].kind = CONSTANT; equation[n].token.constant = c.re; n++; equation[n].level = level + 1; equation[n].kind = OPERATOR; equation[n].token.operatr = PLUS; n++; equation[n].level = level + 2; equation[n].kind = CONSTANT; equation[n].token.constant = c.im; n++; equation[n].level = level + 2; equation[n].kind = OPERATOR; equation[n].token.operatr = TIMES; n++; equation[n].level = level + 2; equation[n].kind = VARIABLE; equation[n].token.variable = IMAGINARY; n++; equation[n].level = level; equation[n].kind = OPERATOR; equation[n].token.operatr = TIMES; n++; blt(&equation[n], &equation[oploc+1], (endloc - (oploc + 1)) * sizeof(token_type)); for (i = loc; i < endloc; i++) { equation[i].level++; } return(d_recurse(equation, np, n, level + 1, v)); } return false; } } blt(scratch, &equation[oploc+1], (endloc - (oploc + 1)) * sizeof(token_type)); n = endloc - (oploc + 1); scratch[n].level = level; scratch[n].kind = OPERATOR; scratch[n].token.operatr = TIMES; n++; if (n + (endloc - loc) + 2 > n_tokens) { error_huge(); } blt(&scratch[n], &equation[loc], (endloc - loc) * sizeof(token_type)); i = n; n += oploc + 1 - loc; for (; i < n; i++) scratch[i].level++; n += endloc - (oploc + 1); for (; i < n; i++) scratch[i].level += 2; scratch[n].level = level + 2; scratch[n].kind = OPERATOR; scratch[n].token.operatr = MINUS; n++; scratch[n].level = level + 2; scratch[n].kind = CONSTANT; scratch[n].token.constant = 1.0; n++; if (n + (oploc - loc) + 1 > n_tokens) { error_huge(); } scratch[n].level = level; scratch[n].kind = OPERATOR; scratch[n].token.operatr = TIMES; n++; j = n; blt(&scratch[n], &equation[loc], (oploc - loc) * sizeof(token_type)); n += oploc - loc; if (*np - (endloc - loc) + n > n_tokens) { error_huge(); } blt(&equation[loc+n], &equation[endloc], (*np - endloc) * sizeof(token_type)); *np += loc + n - endloc; blt(&equation[loc], scratch, n * sizeof(token_type)); return(d_recurse(equation, np, loc + j, level + 1, v)); } /* * The derivative command. */ int derivative_cmd(cp) char *cp; { int i, len; long v = 0; /* Mathomatic variable */ long l1, order = 1; token_type *source, *dest; int n1, *nps, *np; int simplify_flag = true, solved; if (current_not_defined()) { return false; } solved = solved_equation(cur_equation); if (strcmp_tospace(cp, "nosimplify") == 0) { simplify_flag = false; cp = skip_param(cp); } i = next_espace(); if (n_rhs[cur_equation]) { if (!solved) { warning(_("Not a solved equation. Only the RHS will be differentiated.")); } source = rhs[cur_equation]; nps = &n_rhs[cur_equation]; dest = rhs[i]; np = &n_rhs[i]; } else { source = lhs[cur_equation]; nps = &n_lhs[cur_equation]; dest = lhs[i]; np = &n_lhs[i]; } /* parse the command line or prompt: */ if (*cp) { if (is_all(cp)) { cp = skip_param(cp); v = MATCH_ANY; } else { if (isvarchar(*cp)) { cp = parse_var2(&v, cp); if (cp == NULL) { return false; } } } if (*cp) { order = decstrtol(cp, &cp); } if (order <= 0) { error(_("The order must be a positive integer.")); return false; } if (extra_characters(cp)) return false; } if (no_vars(source, *nps, &v)) { warning(_("Current expression contains no variables; the derivative will be zero.")); } else { if (v == 0) { if (!prompt_var(&v)) { return false; } } if (v && v != MATCH_ANY && !found_var(source, *nps, v)) { warning(_("Specified variable not found; the derivative will be zero.")); } } if (v == 0) { error(_("No differentiation variable specified.")); return false; } #if !SILENT list_var(v, 0); if (n_rhs[cur_equation]) { fprintf(gfp, _("Differentiating the RHS with respect to %s"), var_str); } else { fprintf(gfp, _("Differentiating with respect to %s"), var_str); } if (order != 1) { fprintf(gfp, _(" %ld times"), order); } if (simplify_flag) { fprintf(gfp, _(" and simplifying")); } else { fprintf(gfp, _(" and not simplifying")); } fprintf(gfp, "...\n"); #endif blt(dest, source, *nps * sizeof(token_type)); n1 = *nps; /* do the actual differentiating and simplifying: */ for (l1 = 0; l1 < order; l1++) { if (order != 1) { if (n1 == 1 && dest[0].kind == CONSTANT && dest[0].token.constant == 0.0) { fprintf(gfp, _("0 reached after %ld derivatives taken.\n"), l1); order = l1; break; } } if (!differentiate(dest, &n1, v)) { error(_("Differentiation failed.")); return false; } if (simplify_flag) { simpa_repeat_side(dest, &n1, true, false); } else { elim_loop(dest, &n1); } } *np = n1; if (n_rhs[cur_equation]) { blt(lhs[i], lhs[cur_equation], n_lhs[cur_equation] * sizeof(token_type)); n_lhs[i] = n_lhs[cur_equation]; if (solved && isvarchar('\'')) { len = list_var(lhs[i][0].token.variable, 0); for (l1 = 0; l1 < order && len < (MAX_VAR_LEN - 1); l1++) { var_str[len++] = '\''; } var_str[len] = '\0'; if (l1 == order) { parse_var(&lhs[i][0].token.variable, var_str); } } } cur_equation = i; return return_result(cur_equation); } /* * The extrema command. */ int extrema_cmd(cp) char *cp; { int i; long v = 0; /* Mathomatic variable */ long l1, order = 1; token_type want; token_type *source; int n; if (current_not_defined()) { return false; } i = next_espace(); if (n_rhs[cur_equation]) { if (!solved_equation(cur_equation)) { error(_("The current equation is not solved for a variable.")); return false; } source = rhs[cur_equation]; n = n_rhs[cur_equation]; } else { source = lhs[cur_equation]; n = n_lhs[cur_equation]; } if (*cp) { if (isvarchar(*cp)) { cp = parse_var2(&v, cp); if (cp == NULL) { return false; } } if (*cp) { order = decstrtol(cp, &cp); } if (order <= 0) { error(_("The order must be a positive integer.")); return false; } if (extra_characters(cp)) return false; } show_usage = false; if (no_vars(source, n, &v)) { error(_("Current expression contains no variables.")); return false; } if (v == 0) { if (!prompt_var(&v)) { return false; } } if (!found_var(source, n, v)) { error(_("Specified variable not found; the derivative would be zero.")); return false; } blt(rhs[i], source, n * sizeof(token_type)); /* take derivatives with respect to the specified variable and simplify: */ for (l1 = 0; l1 < order; l1++) { if (!differentiate(rhs[i], &n, v)) { error(_("Differentiation failed.")); return false; } simpa_repeat_side(rhs[i], &n, true, false); } if (!found_var(rhs[i], n, v)) { error(_("There are no solutions.")); return false; } n_rhs[i] = n; /* set equal to zero: */ n_lhs[i] = 1; lhs[i][0] = zero_token; cur_equation = i; /* lastly, solve for the specified variable and simplify: */ want.level = 1; want.kind = VARIABLE; want.token.variable = v; if (solve_sub(&want, 1, lhs[i], &n_lhs[i], rhs[i], &n_rhs[i]) <= 0) { error(_("Solve failed.")); return false; } simpa_repeat_side(rhs[i], &n_rhs[i], false, false); return return_result(cur_equation); } /* * The taylor command. */ int taylor_cmd(cp) char *cp; { long v = 0; /* Mathomatic variable */ int i, j, k, i1; int level; long l1, n, order = -1L; double d; char *cp_start, *cp1 = NULL, buf[MAX_CMD_LEN]; int our; int our_nlhs, our_nrhs; token_type *ep, *source, *dest; int n1, *nps, *np; int simplify_flag = true; cp_start = cp; if (current_not_defined()) { return false; } if (strcmp_tospace(cp, "nosimplify") == 0) { simplify_flag = false; cp = skip_param(cp); } i = next_espace(); blt(lhs[i], lhs[cur_equation], n_lhs[cur_equation] * sizeof(token_type)); n_lhs[i] = n_lhs[cur_equation]; n_rhs[i] = 0; our = alloc_next_espace(); n_lhs[i] = 0; if (our < 0) { error(_("Out of free equation spaces.")); show_usage = false; return false; } if (n_rhs[cur_equation]) { source = rhs[cur_equation]; nps = &n_rhs[cur_equation]; dest = rhs[i]; np = &n_rhs[i]; } else { source = lhs[cur_equation]; nps = &n_lhs[cur_equation]; dest = lhs[i]; np = &n_lhs[i]; } if (*cp && isvarchar(*cp)) { cp = parse_var2(&v, cp); if (cp == NULL) { return false; } } if (*cp) { order = decstrtol(cp, &cp1); if (cp1 != skip_param(cp) || order < 0) { error(_("Positive integer required for order.")); return false; } cp = cp1; } show_usage = false; no_vars(source, *nps, &v); if (v == 0) { if (!prompt_var(&v)) { return false; } } if (!found_var(source, *nps, v)) { warning(_("Specified differentiation variable not found; the derivative will be 0.")); } blt(rhs[our], source, *nps * sizeof(token_type)); our_nrhs = *nps; /* Simplify and take the first derivative: */ uf_simp(rhs[our], &our_nrhs); if (!differentiate(rhs[our], &our_nrhs, v)) { error(_("Differentiation failed.")); return false; } if (*cp) { input_column += (cp - cp_start); cp = parse_expr(lhs[our], &our_nlhs, cp, true); if (cp == NULL || extra_characters(cp) || our_nlhs <= 0) { show_usage = true; return false; } } else { #if !SILENT list_var(v, 0); printf(_("Taylor series expansion around %s = point.\n"), var_str); #endif my_strlcpy(prompt_str, _("Enter point (an expression; usually 0): "), sizeof(prompt_str)); if (!get_expr(lhs[our], &our_nlhs)) { return false; } } if (order < 0) { my_strlcpy(prompt_str, _("Enter order (number of derivatives to take): "), sizeof(prompt_str)); if ((cp1 = get_string(buf, sizeof(buf))) == NULL) return false; if (*cp1) { cp = NULL; order = decstrtol(cp1, &cp); if (cp == NULL || *cp || order < 0) { error(_("Positive integer required for order.")); return false; } } else { order = LONG_MAX - 1; #if !SILENT printf(_("Derivatives will be taken until they reach zero...\n")); #endif } } #if !SILENT fprintf(gfp, _("Taylor series")); if (n_rhs[cur_equation]) { fprintf(gfp, _(" of the RHS")); } list_var(v, 0); fprintf(gfp, _(" with respect to %s"), var_str); if (simplify_flag) { fprintf(gfp, _(", simplified")); } else { fprintf(gfp, _(", not simplified")); } fprintf(gfp, "...\n"); #endif n = 0; i1 = 0; blt(dest, source, *nps * sizeof(token_type)); n1 = *nps; loop_again: for (k = i1; k < n1; k += 2) { if (dest[k].kind == VARIABLE && dest[k].token.variable == v) { level = dest[k].level; if ((n1 + our_nlhs - 1) > n_tokens) error_huge(); blt(&dest[k+our_nlhs], &dest[k+1], (n1 - (k + 1)) * sizeof(token_type)); n1 += our_nlhs - 1; j = k; blt(&dest[k], lhs[our], our_nlhs * sizeof(token_type)); k += our_nlhs; for (; j < k; j++) dest[j].level += level; k--; } } if ((n1 + our_nlhs + 7) > n_tokens) error_huge(); for (k = i1; k < n1; k++) dest[k].level++; ep = &dest[n1]; ep->level = 1; ep->kind = OPERATOR; ep->token.operatr = TIMES; ep++; ep->level = 3; ep->kind = VARIABLE; ep->token.variable = v; ep++; ep->level = 3; ep->kind = OPERATOR; ep->token.operatr = MINUS; n1 += 3; j = n1; blt(&dest[n1], lhs[our], our_nlhs * sizeof(token_type)); n1 += our_nlhs; for (; j < n1; j++) dest[j].level += 3; ep = &dest[n1]; ep->level = 2; ep->kind = OPERATOR; ep->token.operatr = POWER; ep++; ep->level = 2; ep->kind = CONSTANT; ep->token.constant = n; ep++; ep->level = 1; ep->kind = OPERATOR; ep->token.operatr = DIVIDE; ep++; for (d = 1.0, l1 = 2; l1 <= n; l1++) d *= l1; ep->level = 1; ep->kind = CONSTANT; ep->token.constant = d; n1 += 4; for (; i1 < n1; i1++) dest[i1].level++; if (simplify_flag) { uf_simp(dest, &n1); } side_debug(1, dest, n1); if (exp_contains_infinity(dest, n1)) { error(_("Result invalid because it contains infinity or NaN.")); return false; } if (n < order) { if (n > 0) { if (!differentiate(rhs[our], &our_nrhs, v)) { error(_("Differentiation failed.")); return false; } } /* symb_flag = symblify; */ simpa_repeat_side(rhs[our], &our_nrhs, true, false /* was true */); /* symb_flag = false; */ if (our_nrhs != 1 || rhs[our][0].kind != CONSTANT || rhs[our][0].token.constant != 0.0) { i1 = n1; if ((i1 + 1 + our_nrhs) > n_tokens) error_huge(); for (j = 0; j < i1; j++) dest[j].level++; dest[i1].level = 1; dest[i1].kind = OPERATOR; dest[i1].token.operatr = PLUS; i1++; blt(&dest[i1], rhs[our], our_nrhs * sizeof(token_type)); n1 = i1 + our_nrhs; n++; goto loop_again; } } #if !SILENT fprintf(gfp, _("%ld non-zero derivative%s applied.\n"), n, (n == 1) ? "" : "s"); #endif if (n_rhs[cur_equation]) { n_lhs[i] = n_lhs[cur_equation]; } *np = n1; cur_equation = i; return return_result(cur_equation); } /* * The limit command. */ int limit_cmd(cp) char *cp; { int i; long v = 0; /* Mathomatic variable */ token_type solved_v, want; char *cp_start; cp_start = cp; if (current_not_defined()) { return false; } i = next_espace(); if (n_rhs[cur_equation] == 0) { /* make expression into an equation: */ blt(rhs[cur_equation], lhs[cur_equation], n_lhs[cur_equation] * sizeof(token_type)); n_rhs[cur_equation] = n_lhs[cur_equation]; n_lhs[cur_equation] = 1; lhs[cur_equation][0].level = 1; lhs[cur_equation][0].kind = VARIABLE; parse_var(&lhs[cur_equation][0].token.variable, "limit"); } if (!solved_equation(cur_equation)) { error(_("The current equation is not solved for a variable.")); return false; } solved_v = lhs[cur_equation][0]; /* parse the command line or prompt: */ if (*cp) { cp = parse_var2(&v, cp); if (cp == NULL) { return false; } } show_usage = false; if (no_vars(rhs[cur_equation], n_rhs[cur_equation], &v)) { warning(_("Current expression contains no variables; that is the answer.")); return return_result(cur_equation); } if (v == 0) { if (!prompt_var(&v)) { return false; } } if (!found_var(rhs[cur_equation], n_rhs[cur_equation], v)) { warning(_("Limit variable not found; answer is original expression.")); return return_result(cur_equation); } if (*cp == '=') { cp = skip_space(cp + 1); } if (*cp) { input_column += (cp - cp_start); cp = parse_expr(tes, &n_tes, cp, true); if (cp == NULL || extra_characters(cp) || n_tes <= 0) { show_usage = true; return false; } } else { list_var(v, 0); snprintf(prompt_str, sizeof(prompt_str), _("as %s goes to: "), var_str); if (!get_expr(tes, &n_tes)) { return false; } } simp_loop(tes, &n_tes); #if !SILENT list_var(v, 0); fprintf(gfp, _("Taking the limit as %s goes to "), var_str); list_proc(tes, n_tes, false); fprintf(gfp, "\n"); #endif /* copy the current equation to a new equation space, then simplify and work on the copy: */ copy_espace(cur_equation, i); simpa_side(rhs[i], &n_rhs[i], false, false); /* see if the limit expression is positive infinity: */ if (n_tes == 1 && tes[0].kind == CONSTANT && tes[0].token.constant == INFINITY) { /* To take the limit to positive infinity, */ /* replace infinity with zero and replace the limit variable with its reciprocal: */ n_tes = 1; tes[0] = zero_token; tlhs[0] = one_token; tlhs[1].level = 1; tlhs[1].kind = OPERATOR; tlhs[1].token.operatr = DIVIDE; tlhs[2].level = 1; tlhs[2].kind = VARIABLE; tlhs[2].token.variable = v; n_tlhs = 3; subst_var_with_exp(rhs[i], &n_rhs[i], tlhs, n_tlhs, v); } /* General limit taking, solve for the limit variable: */ debug_string(0, _("Solving...")); want.level = 1; want.kind = VARIABLE; want.token.variable = v; if (solve_sub(&want, 1, lhs[i], &n_lhs[i], rhs[i], &n_rhs[i]) <= 0) { error(_("Can't take the limit because solve failed.")); return false; } /* replace the limit variable (LHS) with the limit expression: */ blt(lhs[i], tes, n_tes * sizeof(token_type)); n_lhs[i] = n_tes; /* simplify the RHS: */ symb_flag = symblify; simpa_side(rhs[i], &n_rhs[i], false, false); symb_flag = false; if (exp_contains_nan(rhs[i], n_rhs[i])) { error(_("Unable to take limit; result contains NaN (Not a Number).")); return false; } /* solve back for the original variable: */ if (solve_sub(&solved_v, 1, lhs[i], &n_lhs[i], rhs[i], &n_rhs[i]) <= 0) { error(_("Can't take the limit because solve failed.")); return false; } /* simplify before returning the result: */ simpa_side(rhs[i], &n_rhs[i], false, false); if (exp_contains_nan(rhs[i], n_rhs[i])) { error(_("Unable to take limit; result contains NaN (Not a Number).")); return false; } return return_result(i); }