mathomatic/tests/hypertrig.in

22 lines
505 B
Plaintext

; Definitions for hyperbolic trigonometry.
; Use m4 Mathomatic instead for easy entry of these hypertrig functions.
; Based on the identity cosh(x)^2-sinh(x)^2 = 1.
; sinh(x); hyperbolic sine of x
sinh=(e^x-e^-x)/2
; cosh(x); hyperbolic cosine of x
cosh=(e^x+e^-x)/2
; tanh(x); hyperbolic tangent of x
tanh=(e^x-e^-x)/(e^x+e^-x)
; coth(x); hyperbolic cotangent of x
coth=(e^x+e^-x)/(e^x-e^-x)
; sech(x); hyperbolic secant of x
sech=2/(e^x+e^-x)
; csch(x); hyperbolic cosecant of x
csch=2/(e^x-e^-x)