mirror of
https://github.com/mfillpot/mathomatic.git
synced 2026-01-09 04:59:37 +00:00
3717 lines
124 KiB
Plaintext
3717 lines
124 KiB
Plaintext
1-> ; This is a Mathomatic script that reads in all test scripts.
|
|
1->
|
|
1-> clear all
|
|
1-> ; Test simplifying trig functions:
|
|
1-> read trig.in
|
|
1-> ; Trigonometric functions as complex exponentials.
|
|
1-> ; Use m4 Mathomatic instead for easy entry of these trig functions.
|
|
1-> ; Based on Euler's identity: e^(i*x) = cos(x) + i*sin(x)
|
|
1-> ; Variable x is an angle in radians.
|
|
1->
|
|
1-> ; Unity relationship: sin(x)^2 + cos(x)^2 = 1
|
|
1->
|
|
1-> ; sin(x) (sine of x) = cos(pi/2 - x)
|
|
1-> sin=(e^(i*x)-e^(-i*x))/(2i)
|
|
|
|
((e^(i*x)) - (e^(-i*x)))
|
|
#1: sin = ------------------------
|
|
(2*i)
|
|
|
|
1->
|
|
1-> ; cos(x) (cosine of x) = sin(pi/2 - x)
|
|
1-> cos=(e^(i*x)+e^(-i*x))/2
|
|
|
|
((e^(i*x)) + (e^(-i*x)))
|
|
#2: cos = ------------------------
|
|
2
|
|
|
|
2->
|
|
2-> ; tan(x) (tangent of x) = sin(x)/cos(x) = cot(pi/2 - x)
|
|
2-> tan=(e^(i*x)-e^(-i*x))/(i*(e^(i*x)+e^(-i*x)))
|
|
|
|
((e^(i*x)) - (e^(-i*x)))
|
|
#3: tan = ----------------------------
|
|
(i*((e^(i*x)) + (e^(-i*x))))
|
|
|
|
3->
|
|
3-> ; cot(x) (cotangent of x) = cos(x)/sin(x) = tan(pi/2 - x)
|
|
3-> cot=i*(e^(i*x)+e^(-i*x))/(e^(i*x)-e^(-i*x))
|
|
|
|
i*((e^(i*x)) + (e^(-i*x)))
|
|
#4: cot = --------------------------
|
|
((e^(i*x)) - (e^(-i*x)))
|
|
|
|
4->
|
|
4-> ; sec(x) (secant of x) = 1/cos(x) = csc(pi/2 - x)
|
|
4-> sec=2/(e^(i*x)+e^(-i*x))
|
|
|
|
2
|
|
#5: sec = ------------------------
|
|
((e^(i*x)) + (e^(-i*x)))
|
|
|
|
5->
|
|
5-> ; csc(x) (cosecant of x) = 1/sin(x) = sec(pi/2 - x)
|
|
5-> csc=2i/(e^(i*x)-e^(-i*x))
|
|
|
|
2*i
|
|
#6: csc = ------------------------
|
|
((e^(i*x)) - (e^(-i*x)))
|
|
|
|
Successfully finished reading script file "trig.in".
|
|
6-> read hypertrig.in
|
|
6-> ; Definitions for hyperbolic trigonometry.
|
|
6-> ; Use m4 Mathomatic instead for easy entry of these hypertrig functions.
|
|
6-> ; Based on the identity cosh(x)^2-sinh(x)^2 = 1.
|
|
6->
|
|
6-> ; sinh(x); hyperbolic sine of x
|
|
6-> sinh=(e^x-e^-x)/2
|
|
|
|
(e^x - (e^(-x)))
|
|
#7: sinh = ----------------
|
|
2
|
|
|
|
7->
|
|
7-> ; cosh(x); hyperbolic cosine of x
|
|
7-> cosh=(e^x+e^-x)/2
|
|
|
|
(e^x + (e^(-x)))
|
|
#8: cosh = ----------------
|
|
2
|
|
|
|
8->
|
|
8-> ; tanh(x); hyperbolic tangent of x
|
|
8-> tanh=(e^x-e^-x)/(e^x+e^-x)
|
|
|
|
(e^x - (e^(-x)))
|
|
#9: tanh = ----------------
|
|
(e^x + (e^(-x)))
|
|
|
|
9->
|
|
9-> ; coth(x); hyperbolic cotangent of x
|
|
9-> coth=(e^x+e^-x)/(e^x-e^-x)
|
|
|
|
(e^x + (e^(-x)))
|
|
#10: coth = ----------------
|
|
(e^x - (e^(-x)))
|
|
|
|
10->
|
|
10-> ; sech(x); hyperbolic secant of x
|
|
10-> sech=2/(e^x+e^-x)
|
|
|
|
2
|
|
#11: sech = ----------------
|
|
(e^x + (e^(-x)))
|
|
|
|
11->
|
|
11-> ; csch(x); hyperbolic cosecant of x
|
|
11-> csch=2/(e^x-e^-x)
|
|
|
|
2
|
|
#12: csch = ----------------
|
|
(e^x - (e^(-x)))
|
|
|
|
Successfully finished reading script file "hypertrig.in".
|
|
12-> simplify all
|
|
|
|
1
|
|
i*(--------- - (e^(i*x)))
|
|
(e^(i*x))
|
|
#1: sin = -------------------------
|
|
2
|
|
|
|
|
|
1
|
|
((e^(i*x)) + ---------)
|
|
(e^(i*x))
|
|
#2: cos = -----------------------
|
|
2
|
|
|
|
|
|
2
|
|
#3: tan = i*(----------------- - 1)
|
|
((e^(2*i*x)) + 1)
|
|
|
|
|
|
2
|
|
#4: cot = i*(1 + -----------------)
|
|
((e^(2*i*x)) - 1)
|
|
|
|
|
|
2*(e^(i*x))
|
|
#5: sec = -----------------
|
|
((e^(2*i*x)) + 1)
|
|
|
|
|
|
2*i*(e^(i*x))
|
|
#6: csc = -----------------
|
|
((e^(2*i*x)) - 1)
|
|
|
|
|
|
1
|
|
(e^x - ---)
|
|
e^x
|
|
#7: sinh = -----------
|
|
2
|
|
|
|
|
|
1
|
|
(e^x + ---)
|
|
e^x
|
|
#8: cosh = -----------
|
|
2
|
|
|
|
|
|
2
|
|
#9: tanh = 1 - ---------------
|
|
((e^(2*x)) + 1)
|
|
|
|
|
|
2
|
|
#10: coth = 1 + ---------------
|
|
((e^(2*x)) - 1)
|
|
|
|
|
|
2*e^x
|
|
#11: sech = ---------------
|
|
((e^(2*x)) + 1)
|
|
|
|
|
|
2*e^x
|
|
#12: csch = ---------------
|
|
((e^(2*x)) - 1)
|
|
|
|
12-> simplify frac all
|
|
|
|
1
|
|
i*(--------- - (e^(i*x)))
|
|
(e^(i*x))
|
|
#1: sin = -------------------------
|
|
2
|
|
|
|
|
|
1
|
|
((e^(i*x)) + ---------)
|
|
(e^(i*x))
|
|
#2: cos = -----------------------
|
|
2
|
|
|
|
|
|
i*(1 - (e^(2*i*x)))
|
|
#3: tan = -------------------
|
|
((e^(2*i*x)) + 1)
|
|
|
|
|
|
i*((e^(2*i*x)) + 1)
|
|
#4: cot = -------------------
|
|
((e^(2*i*x)) - 1)
|
|
|
|
|
|
2*(e^(i*x))
|
|
#5: sec = -----------------
|
|
((e^(2*i*x)) + 1)
|
|
|
|
|
|
2*i*(e^(i*x))
|
|
#6: csc = -----------------
|
|
((e^(2*i*x)) - 1)
|
|
|
|
|
|
1
|
|
(e^x - ---)
|
|
e^x
|
|
#7: sinh = -----------
|
|
2
|
|
|
|
|
|
1
|
|
(e^x + ---)
|
|
e^x
|
|
#8: cosh = -----------
|
|
2
|
|
|
|
|
|
((e^(2*x)) - 1)
|
|
#9: tanh = ---------------
|
|
((e^(2*x)) + 1)
|
|
|
|
|
|
((e^(2*x)) + 1)
|
|
#10: coth = ---------------
|
|
((e^(2*x)) - 1)
|
|
|
|
|
|
2*e^x
|
|
#11: sech = ---------------
|
|
((e^(2*x)) + 1)
|
|
|
|
|
|
2*e^x
|
|
#12: csch = ---------------
|
|
((e^(2*x)) - 1)
|
|
|
|
12-> ; Let's simplify some trig identities without using m4:
|
|
12-> sin^2+cos^2=1
|
|
|
|
#13: sin^2 + cos^2 = 1
|
|
|
|
13-> elim all
|
|
Eliminating variable cos using solved equation #2...
|
|
Eliminating variable sin using solved equation #1...
|
|
|
|
1 1
|
|
i*(--------- - (e^(i*x))) ((e^(i*x)) + ---------)
|
|
(e^(i*x)) (e^(i*x))
|
|
#13: (-------------------------^2) + (-----------------------^2) = 1
|
|
2 2
|
|
|
|
13-> simplify
|
|
|
|
#13: 1 = 1
|
|
|
|
13-> tan=sin/cos
|
|
|
|
sin
|
|
#14: tan = ---
|
|
cos
|
|
|
|
14-> elim all
|
|
Eliminating variable tan using solved equation #3...
|
|
Eliminating variable cos using solved equation #2...
|
|
Eliminating variable sin using solved equation #1...
|
|
|
|
1
|
|
i*(--------- - (e^(i*x)))
|
|
i*(1 - (e^(2*i*x))) (e^(i*x))
|
|
#14: ------------------- = -------------------------
|
|
((e^(2*i*x)) + 1) 1
|
|
((e^(i*x)) + ---------)
|
|
(e^(i*x))
|
|
|
|
14-> csc=1/sin
|
|
|
|
1
|
|
#15: csc = ---
|
|
sin
|
|
|
|
15-> elim all
|
|
Eliminating variable csc using solved equation #6...
|
|
Eliminating variable sin using solved equation #1...
|
|
|
|
2*i*(e^(i*x)) 2
|
|
#15: ----------------- = ---------------------------
|
|
((e^(2*i*x)) - 1) 1
|
|
(i*(--------- - (e^(i*x))))
|
|
(e^(i*x))
|
|
|
|
15-> sec=1/cos
|
|
|
|
1
|
|
#16: sec = ---
|
|
cos
|
|
|
|
16-> elim all
|
|
Eliminating variable sec using solved equation #5...
|
|
Eliminating variable cos using solved equation #2...
|
|
|
|
2*(e^(i*x)) 2
|
|
#16: ----------------- = -----------------------
|
|
((e^(2*i*x)) + 1) 1
|
|
((e^(i*x)) + ---------)
|
|
(e^(i*x))
|
|
|
|
16-> cot=1/tan
|
|
|
|
1
|
|
#17: cot = ---
|
|
tan
|
|
|
|
17-> elim all
|
|
Eliminating variable cot using solved equation #4...
|
|
Eliminating variable tan using solved equation #3...
|
|
|
|
i*((e^(2*i*x)) + 1) ((e^(2*i*x)) + 1)
|
|
#17: ------------------- = ---------------------
|
|
((e^(2*i*x)) - 1) (i*(1 - (e^(2*i*x))))
|
|
|
|
17-> 1+tan^2=sec^2
|
|
|
|
#18: 1 + tan^2 = sec^2
|
|
|
|
18-> elim all
|
|
Eliminating variable sec using solved equation #5...
|
|
Eliminating variable tan using solved equation #3...
|
|
|
|
i*(1 - (e^(2*i*x))) 2*(e^(i*x))
|
|
#18: 1 + (-------------------^2) = -----------------^2
|
|
((e^(2*i*x)) + 1) ((e^(2*i*x)) + 1)
|
|
|
|
18-> cosh^2-sinh^2=1 ; The main hyperbolic trigonometry identity:
|
|
|
|
#19: cosh^2 - sinh^2 = 1
|
|
|
|
19-> elim all
|
|
Eliminating variable cosh using solved equation #8...
|
|
Eliminating variable sinh using solved equation #7...
|
|
|
|
1 1
|
|
(e^x + ---) (e^x - ---)
|
|
e^x e^x
|
|
#19: (-----------^2) - (-----------^2) = 1
|
|
2 2
|
|
|
|
19-> ; Now verify them all, to show and check the new solve command usage.
|
|
19-> solve 13-19 verifiable 0
|
|
Solving equation #13 for 0 with required identity verification...
|
|
Solve and "repeat simplify quick" successful:
|
|
|
|
#13: 0 = 0
|
|
|
|
This equation is an identity.
|
|
Solving equation #14 for 0 with required identity verification...
|
|
Solve and "repeat simplify quick" successful:
|
|
|
|
#14: 0 = 0
|
|
|
|
This equation is an identity.
|
|
Solving equation #15 for 0 with required identity verification...
|
|
Solve and "repeat simplify quick" successful:
|
|
|
|
#15: 0 = 0
|
|
|
|
This equation is an identity.
|
|
Solving equation #16 for 0 with required identity verification...
|
|
Solve and "repeat simplify quick" successful:
|
|
|
|
#16: 0 = 0
|
|
|
|
This equation is an identity.
|
|
Solving equation #17 for 0 with required identity verification...
|
|
Solve and "repeat simplify quick" successful:
|
|
|
|
#17: 0 = 0
|
|
|
|
This equation is an identity.
|
|
Solving equation #18 for 0 with required identity verification...
|
|
Solve and "repeat simplify quick" successful:
|
|
|
|
#18: 0 = (4*(e^(2*i*x))) - (((e^(2*i*x)) + 1)^2) + ((1 - (e^(2*i*x)))^2)
|
|
|
|
This equation is an identity.
|
|
Solving equation #19 for 0 with required identity verification...
|
|
Solve and "repeat simplify quick" successful:
|
|
|
|
#19: 0 = (4*(e^(2*x))) + (((e^(2*x)) - 1)^2) - (((e^(2*x)) + 1)^2)
|
|
|
|
This equation is an identity.
|
|
19-> pause
|
|
19-> clear all
|
|
1-> ; Next, test fixed-point mode and some financial equations:
|
|
1-> read finance
|
|
1->
|
|
1-> ; Combine 2 commonly used formulas to produce the mortgage payment formula.
|
|
1-> ; Here are 3 related financial formulas that can be "read" into Mathomatic.
|
|
1->
|
|
1-> set fixed ; Enable fixed-point money mode; rounds to the nearest cent.
|
|
Success.
|
|
1-> ; First, the variable definitions:
|
|
1-> ; pv = present value
|
|
1-> ; fv = future value (maturity value)
|
|
1-> ; interest_rate = interest rate per period (1 = 100%)
|
|
1-> ; n = number of periods
|
|
1->
|
|
1-> ; Compound Interest Future Value Formula:
|
|
1-> fv1 = pv*(1+interest_rate)^n
|
|
|
|
#1: fv1 = pv*((1.00 + interest_rate)^n)
|
|
|
|
1-> ; Future Value Annuity Formula:
|
|
1-> fv2 = payment*(((1+interest_rate)^n-1)/interest_rate)
|
|
|
|
payment*(((1.00 + interest_rate)^n) - 1.00)
|
|
#2: fv2 = -------------------------------------------
|
|
interest_rate
|
|
|
|
2-> ; Next we will combine these to produce the standard annuity formula.
|
|
2-> ; Set equal, then solve and simplify:
|
|
2-> fv1 = fv2
|
|
|
|
#3: fv1 = fv2
|
|
|
|
3-> pause
|
|
3-> eliminate all ; combine both formulas to produce the annuity formula:
|
|
Eliminating variable fv2 using solved equation #2...
|
|
Eliminating variable fv1 using solved equation #1...
|
|
|
|
payment*(((1.00 + interest_rate)^n) - 1.00)
|
|
#3: pv*((1.00 + interest_rate)^n) = -------------------------------------------
|
|
interest_rate
|
|
|
|
3-> solve verifiable pv ; solve for present value:
|
|
Solving equation #3 for pv with required verification...
|
|
Solve and "repeat simplify quick" successful:
|
|
|
|
1.00
|
|
payment*(1.00 - --------------------------)
|
|
((1.00 + interest_rate)^n)
|
|
#3: pv = -------------------------------------------
|
|
interest_rate
|
|
|
|
Solution verified.
|
|
3-> solve verifiable payment ; or solve for payment per period:
|
|
Solving equation #3 for payment with required verification...
|
|
Solve and "repeat simplify quick" successful:
|
|
|
|
pv*((1.00 + interest_rate)^n)*interest_rate
|
|
#3: payment = -------------------------------------------
|
|
(((1.00 + interest_rate)^n) - 1.00)
|
|
|
|
Solution verified.
|
|
3-> pause End of finance tutorial
|
|
3-> ; Remember we are still in fixed-point money mode,
|
|
3-> ; unless you typed "set no fixed".
|
|
Successfully finished reading script file "finance.in".
|
|
3-> a=55/-3
|
|
|
|
(-55.00)
|
|
#4: a = --------
|
|
3.00
|
|
|
|
4-> list
|
|
#4: a = (-55.00)/3.00
|
|
4-> display mixed
|
|
|
|
1.00
|
|
#4: a = -(18.00 + ----)
|
|
3.00
|
|
|
|
4-> display mixed factor
|
|
|
|
1.00
|
|
#4: a = -((2.00*3.00^2.00) + ----)
|
|
3.00
|
|
|
|
4-> display simple
|
|
|
|
(-55.00)
|
|
#4: a = --------
|
|
3.00
|
|
|
|
4-> list
|
|
#4: a = (-55.00)/3.00
|
|
4-> display
|
|
|
|
(-55.00)
|
|
#4: a = --------
|
|
3.00
|
|
|
|
4-> set no fixed_point
|
|
Success.
|
|
4-> display
|
|
|
|
-55
|
|
#4: a = ---
|
|
3
|
|
|
|
4-> clear all
|
|
1-> read quadratic
|
|
1->
|
|
1-> ; General quadratic (2nd degree polynomial) formula.
|
|
1-> ; Formula for the 2 roots (solutions for x)
|
|
1-> ; of the general quadratic equation.
|
|
1-> ;
|
|
1-> a x^2 + b x + c = 0 ; The general quadratic equation.
|
|
|
|
#1: (a*x^2) + (b*x) + c = 0
|
|
|
|
1-> copy select ; Make a copy and select it.
|
|
|
|
#2: (a*x^2) + (b*x) + c = 0
|
|
|
|
2-> solve verifiable for x ; Mathomatic can easily solve and verify that:
|
|
Solving equation #2 for x with required verification...
|
|
Equation is a degree 2 polynomial equation in x.
|
|
Equation was solved with the quadratic formula.
|
|
Solve and "repeat simplify quick" successful:
|
|
|
|
1
|
|
((((b^2 - (4*a*c))^-)*sign) - b)
|
|
2
|
|
#2: x = --------------------------------
|
|
(2*a)
|
|
|
|
All solutions verified.
|
|
2-> ; This is the quadratic formula.
|
|
2-> ; The coefficients (a, b, and c) may be any mathematical expression not containing x.
|
|
2-> pause
|
|
2-> ; Here is the derivation and proof of the quadratic formula,
|
|
2-> ; without actually using the quadratic formula,
|
|
2-> ; because that is what we are trying to derive now, from the quadratic equation:
|
|
2-> #1:
|
|
|
|
#1: (a*x^2) + (b*x) + c = 0
|
|
|
|
1-> copy select ; make a copy of the general quadratic equation to work on and select it.
|
|
|
|
#3: (a*x^2) + (b*x) + c = 0
|
|
|
|
3-> -=c ; subtract "c" from both sides.
|
|
|
|
#3: (a*x^2) + (b*x) = -c
|
|
|
|
3-> /=a ; divide both sides by "a".
|
|
|
|
((a*x^2) + (b*x)) -c
|
|
#3: ----------------- = --
|
|
a a
|
|
|
|
3-> pause Next simplify it and turn it into a repeated factor polynomial equation
|
|
3-> simplify
|
|
|
|
x*b -c
|
|
#3: x^2 + --- = --
|
|
a a
|
|
|
|
3-> +=b^2/(4*(a^2)) ; add "b^2/(4*(a^2))" to both sides.
|
|
|
|
x*b b^2 b^2 c
|
|
#3: x^2 + --- + ------- = ------- - -
|
|
a (4*a^2) (4*a^2) a
|
|
|
|
3-> ; Now the LHS is a repeated factor polynomial, next factor it by pressing Enter to simplify.
|
|
3-> pause
|
|
3-> simplify ; Now the LHS is a factored polynomial, so solving for the single "x" is easy.
|
|
|
|
b b
|
|
(((2*x) + -)^2) (-^2)
|
|
a a c
|
|
#3: --------------- = ----- - -
|
|
4 4 a
|
|
|
|
3-> set debug 1 ; Let Mathomatic do the work and show it too.
|
|
Success.
|
|
3-> ; Show how easy it is to solve this equation now, after pressing Enter.
|
|
3-> pause
|
|
3-> x
|
|
level 1: 0.25*(((2*x) + (b/a))^2) = ((0.25*b^2) - (c*a))/a^2
|
|
Dividing both sides of the equation by "0.25":
|
|
level 1: ((2*x) + (b/a))^2 = 4*((0.25*b^2) - (c*a))/a^2
|
|
Raising both sides of the equation to the power of 0.5:
|
|
level 1: (2*x) + (b/a) = ((4*((0.25*b^2) - (c*a))/a^2)^0.5)*sign0
|
|
Subtracting "b/a" from both sides of the equation:
|
|
level 1: 2*x = (((4*((0.25*b^2) - (c*a))/a^2)^0.5)*sign0) - (b/a)
|
|
Dividing both sides of the equation by "2":
|
|
level 1: x = 0.5*((((4*((0.25*b^2) - (c*a))/a^2)^0.5)*sign0) - (b/a))
|
|
Solve completed:
|
|
level 1: x = 0.5*((((4*((0.25*b^2) - (c*a))/a^2)^0.5)*sign0) - (b/a))
|
|
Solve successful:
|
|
|
|
b^2
|
|
4*(--- - (c*a))
|
|
4 1 b
|
|
(((---------------^-)*sign0) - -)
|
|
a^2 2 a
|
|
#3: x = ---------------------------------
|
|
2
|
|
|
|
3-> ; Here is the raw solve result, press the Enter key to simplify and compare with the quadratic formula.
|
|
3-> pause
|
|
3-> set no debug
|
|
Success.
|
|
3-> repeat simplify
|
|
|
|
1
|
|
((((b^2 - (4*c*a))^-)*sign0) - b)
|
|
2
|
|
#3: x = ---------------------------------
|
|
(2*a)
|
|
|
|
3-> compare with 2
|
|
Comparing #2 with #3...
|
|
Equations are identical.
|
|
3->
|
|
Successfully finished reading script file "quadratic.in".
|
|
3-> clear all
|
|
1-> read electronics
|
|
1->
|
|
1-> ; General electrical formulas:
|
|
1->
|
|
1-> volts=amps*ohms ; Ohm's Law, commonly solved for resistance (ohms) or current (amps).
|
|
|
|
#1: volts = amps*ohms
|
|
|
|
1-> watts=volts*amps ; Power Law
|
|
|
|
#2: watts = volts*amps
|
|
|
|
2-> 1/r=1/r1+1/r2 ; Resistance (r) of 2 resistors (r1 and r2) wired in parallel.
|
|
|
|
1 1 1
|
|
#3: - = -- + --
|
|
r r1 r2
|
|
|
|
3-> solve verifiable r ; Solve for the resulting resistance.
|
|
Solving equation #3 for r with required verification...
|
|
Solve and "repeat simplify quick" successful:
|
|
|
|
r1*r2
|
|
#3: r = ---------
|
|
(r2 + r1)
|
|
|
|
Solution verified.
|
|
3-> 1/r=1/r1+1/r2+1/r3 ; Resistance (r) of 3 resistors wired in parallel.
|
|
|
|
1 1 1 1
|
|
#4: - = -- + -- + --
|
|
r r1 r2 r3
|
|
|
|
4-> solve verifiable r ; Solve for the resulting resistance.
|
|
Solving equation #4 for r with required verification...
|
|
Solve and "repeat simplify quick" successful:
|
|
|
|
r1*r2*r3
|
|
#4: r = --------------------------
|
|
((r3*r2) + (r1*(r3 + r2)))
|
|
|
|
Solution verified.
|
|
4-> frequency=1/(2*pi*(L*C)^.5) ; Resonant frequency of an LC circuit in hertz.
|
|
|
|
1
|
|
#5: frequency = ----------------
|
|
1
|
|
(2*pi*((L*C)^-))
|
|
2
|
|
|
|
5-> ; L is the inductance in henries, and C is the capacitance in farads.
|
|
Successfully finished reading script file "electronics.in".
|
|
5-> simplify all
|
|
|
|
#1: volts = amps*ohms
|
|
|
|
|
|
#2: watts = volts*amps
|
|
|
|
|
|
r1*r2
|
|
#3: r = ---------
|
|
(r2 + r1)
|
|
|
|
|
|
r1*r2*r3
|
|
#4: r = --------------------------
|
|
((r3*r2) + (r1*(r3 + r2)))
|
|
|
|
|
|
1
|
|
#5: frequency = ----------------
|
|
1
|
|
(2*pi*((L*C)^-))
|
|
2
|
|
|
|
5-> clear all
|
|
1-> read fibonacci
|
|
1->
|
|
1-> ; This Mathomatic input file contains the mathematical formula to
|
|
1-> ; directly calculate the "n"th Fibonacci number.
|
|
1-> ; The formula presented here is called Binet's formula, found at
|
|
1-> ; http://en.wikipedia.org/wiki/Fibonacci_number
|
|
1-> ;
|
|
1-> ; The Fibonacci sequence is the endless integer sequence:
|
|
1-> ; 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 ...
|
|
1-> ; Any Fibonacci number is always the sum of the previous two Fibonacci numbers.
|
|
1-> ;
|
|
1-> ; Easy to understand info on the golden ratio can be found here:
|
|
1-> ; http://www.mathsisfun.com/numbers/golden-ratio.html
|
|
1->
|
|
1-> -1/phi=1-phi ; Derive the golden ratio (phi) from this quadratic polynomial.
|
|
|
|
-1
|
|
#1: --- = 1 - phi
|
|
phi
|
|
|
|
1-> 0 ; show it is quadratic
|
|
Solve successful:
|
|
|
|
#1: 0 = ((1 - phi)*phi) + 1
|
|
|
|
1-> unfactor
|
|
|
|
#1: 0 = phi - phi^2 + 1
|
|
|
|
1-> solve verifiable for phi ; The golden ratio will help us directly compute Fibonacci numbers.
|
|
Solving equation #1 for phi with required verification...
|
|
Equation is a degree 2 polynomial equation in phi.
|
|
Equation was solved with the quadratic formula.
|
|
Solve and "repeat simplify quick" successful:
|
|
|
|
1
|
|
(1 - ((5^-)*sign))
|
|
2
|
|
#1: phi = ------------------
|
|
2
|
|
|
|
All solutions verified.
|
|
1-> replace sign with -1 ; the golden ratio constant:
|
|
|
|
1
|
|
(1 + (5^-))
|
|
2
|
|
#1: phi = -----------
|
|
2
|
|
|
|
1-> fibonacci = ((phi^n) - ((1 - phi)^n))/(phi - (1 - phi)) ; Binet's Fibonacci formula.
|
|
|
|
(phi^n - ((1 - phi)^n))
|
|
#2: fibonacci = -----------------------
|
|
(phi - 1 + phi)
|
|
|
|
2-> eliminate phi ; Completed direct Fibonacci formula:
|
|
Eliminating variable phi using solved equation #1...
|
|
|
|
1 1
|
|
(1 + (5^-)) (1 + (5^-))
|
|
2 2
|
|
((-----------^n) - ((1 - -----------)^n))
|
|
2 2
|
|
#2: fibonacci = -----------------------------------------
|
|
1
|
|
(5^-)
|
|
2
|
|
|
|
2-> simplify ; Note that Mathomatic rationalizes the denominator here.
|
|
|
|
1 1 1
|
|
(5^-)*(((1 + (5^-))^n) - ((1 - (5^-))^n))
|
|
2 2 2
|
|
#2: fibonacci = -----------------------------------------
|
|
(5*2^n)
|
|
|
|
2-> for n 1 20 ; Display the first 20 Fibonacci numbers by plugging in values 1-20:
|
|
n = 1: 1
|
|
n = 2: 1
|
|
n = 3: 2
|
|
n = 4: 3
|
|
n = 5: 5
|
|
n = 6: 8
|
|
n = 7: 13
|
|
n = 8: 21
|
|
n = 9: 34
|
|
n = 10: 55
|
|
n = 11: 89
|
|
n = 12: 144
|
|
n = 13: 233
|
|
n = 14: 377
|
|
n = 15: 610
|
|
n = 16: 987
|
|
n = 17: 1597
|
|
n = 18: 2584
|
|
n = 19: 4181
|
|
n = 20: 6765
|
|
2-> ; Note that this formula should work for any positive integer value of n.
|
|
Successfully finished reading script file "fibonacci.in".
|
|
2-> clear all
|
|
1-> read test
|
|
1-> ; Read in some of the things previously fixed in Mathomatic.
|
|
1-> read fix1
|
|
1-> clear all
|
|
1-> y = (((((a+b)/(b-c))^0.25)+(((b-c)/(a+b))^0.25)+(((a-b)*i/(b-c))^0.5))*(i^0.5))^(1/n)
|
|
|
|
(a + b) 1 (b - c) 1 (a - b)*i 1 1 1
|
|
#1: y = (((-------^-) + (-------^-) + (---------^-))*(i^-))^-
|
|
(b - c) 4 (a + b) 4 (b - c) 2 2 n
|
|
|
|
1-> y = (a^a)*(1+(((a^(a^2))*(b^a))^(1/(1-a))))
|
|
|
|
1
|
|
#2: y = a^a*(1 + (((a^(a^2))*b^a)^-------))
|
|
(1 - a)
|
|
|
|
2-> y = (a^2)*(1+(((a^(2*((1.5*a)-1)))*(b^a))^(1/(1-a))))
|
|
|
|
3*a 1
|
|
#3: y = a^2*(1 + (((a^(2*(--- - 1)))*b^a)^-------))
|
|
2 (1 - a)
|
|
|
|
3-> y = (15*(d^2)/((1+(d^2))^(7/2)))-(12/((1+(d^2))^(5/2)))-6
|
|
|
|
15*d^2 12
|
|
#4: y = ------------- - ------------- - 6
|
|
7 5
|
|
((1 + d^2)^-) ((1 + d^2)^-)
|
|
2 2
|
|
|
|
4-> y = ((9 + (32^.5))^.5) ; should simplify to (1 + 2*(2^.5)) someday
|
|
|
|
1 1
|
|
#5: y = (9 + (32^-))^-
|
|
2 2
|
|
|
|
5-> simplify symbolic all
|
|
|
|
(b + a) 1 (c - b) 1 (a - b) 1 1
|
|
#1: y = ((-------^-) + (-------^-) + (-------^-))^-
|
|
(c - b) 4 (a + b) 4 (c - b) 2 n
|
|
|
|
|
|
a
|
|
#2: y = a^a + ((a*b)^-------)
|
|
(1 - a)
|
|
|
|
|
|
a
|
|
#3: y = a^2 + ((a*b)^-------)
|
|
(1 - a)
|
|
|
|
|
|
(d^2 - 4)
|
|
#4: y = 3*(------------- - 2)
|
|
7
|
|
((1 + d^2)^-)
|
|
2
|
|
|
|
|
|
1 1
|
|
#5: y = (9 + (4*(2^-)))^-
|
|
2 2
|
|
|
|
5-> simplify all
|
|
|
|
(b + a) 1 (c - b) 1 (a - b) 1 1
|
|
#1: y = ((-------^-) + (-------^-) + (-------^-))^-
|
|
(c - b) 4 (a + b) 4 (c - b) 2 n
|
|
|
|
|
|
a
|
|
#2: y = a^a + ((a*b)^-------)
|
|
(1 - a)
|
|
|
|
|
|
a
|
|
#3: y = a^2 + ((a*b)^-------)
|
|
(1 - a)
|
|
|
|
|
|
(d^2 - 4)
|
|
#4: y = 3*(------------- - 2)
|
|
7
|
|
((1 + d^2)^-)
|
|
2
|
|
|
|
|
|
1 1
|
|
#5: y = (9 + (4*(2^-)))^-
|
|
2 2
|
|
|
|
5-> x^2=|x|
|
|
|
|
1
|
|
#6: x^2 = (x^2)^-
|
|
2
|
|
|
|
6-> solve for x
|
|
Equation is a degree 2 polynomial equation in x.
|
|
Raising both equation sides to the power of 2 and expanding...
|
|
Equation is a degree 3 polynomial equation in x.
|
|
Removing possible solution: "x = 0".
|
|
Solve successful:
|
|
|
|
#6: x = sign
|
|
|
|
6-> x^(1/99)=x
|
|
|
|
1
|
|
#7: x^-- = x
|
|
99
|
|
|
|
7-> solve verifiable x
|
|
Solving equation #7 for x with required verification...
|
|
Equation is a degree 0.01010101010101 polynomial equation in x.
|
|
Raising both equation sides to the power of 99 and expanding...
|
|
Equation is a degree 99 polynomial equation in x.
|
|
Removing possible solution: "x = 0".
|
|
Solve and "repeat simplify quick" successful:
|
|
|
|
#7: x = sign0
|
|
|
|
All solutions verified.
|
|
7-> (2i)^.5+e^(pi*i)
|
|
Calculating...
|
|
answer = i
|
|
8-> (1-2i)/(3+4i)
|
|
Calculating...
|
|
answer = (-0.4*i) - 0.2, with fractions it is: (-2*i/5) - (1/5)
|
|
9-> divide (1-2i) (3+4i)
|
|
|
|
Result of complex number division:
|
|
-0.2 -0.4*i
|
|
|
|
9->
|
|
9-> y=x^3
|
|
|
|
#10: y = x^3
|
|
|
|
10-> extrema x
|
|
|
|
#11: x = 0
|
|
|
|
11-> (x+1)^4
|
|
|
|
#12: (x + 1)^4
|
|
|
|
12-> extrema x
|
|
|
|
#13: x = -1
|
|
|
|
13-> roots 4 1 0 ; The 4 roots of unity.
|
|
|
|
The polar coordinates are:
|
|
1 amplitude and
|
|
0 radians (0 degrees).
|
|
|
|
The 4 roots of (1)^(1/4) are:
|
|
|
|
1
|
|
+1*i
|
|
-1
|
|
-1*i
|
|
13-> factor number -75 100000000000000 16! 7921%14 ; should be exactly 11
|
|
-75 = 3 * 5^2 * -1
|
|
100000000000000 = 2^14 * 5^14
|
|
20922789888000 = 2^15 * 3^6 * 5^3 * 7^2 * 11 * 13
|
|
Prime number: 11 = 11
|
|
Successfully finished reading script file "fix1.in".
|
|
13-> read fix2
|
|
13-> clear all
|
|
1-> b = ((-1)^(1/((-1*n)+1)*(2+n)))*(a^(1/((-1*n)+1)))
|
|
|
|
(2 + n) 1
|
|
#1: b = ((-1)^-------)*(a^-------)
|
|
(1 - n) (1 - n)
|
|
|
|
1-> x = 1/(y^(1/(n-1)*(-2+n)))/((n^(n/(n-1)))-(n^(1/(n-1))))
|
|
|
|
1
|
|
#2: x = -----------------------------------------
|
|
(n - 2) n 1
|
|
((y^-------)*((n^-------) - (n^-------)))
|
|
(n - 1) (n - 1) (n - 1)
|
|
|
|
2-> y = (x+(((1/x)+1)*((x^m)+((a+b)/(x^n)/(c+d)))))/(x+1)
|
|
|
|
1 (a + b)
|
|
(x + ((- + 1)*(x^m + -------------)))
|
|
x (x^n*(c + d))
|
|
#3: y = -------------------------------------
|
|
(x + 1)
|
|
|
|
3-> y = 3 / (x^3+3x^2-x-3) - 2 / (x^3-x^2-3x+3) + 4 / (x^3+x^2-3x-3)
|
|
|
|
3 2 4
|
|
#4: y = ----------------------- - ----------------------- + -----------------------
|
|
(x^3 + (3*x^2) - x - 3) (x^3 - x^2 - (3*x) + 3) (x^3 + x^2 - (3*x) - 3)
|
|
|
|
4-> (x^2 - 1)^4/(x + 1)^2
|
|
|
|
((x^2 - 1)^4)
|
|
#5: -------------
|
|
((x + 1)^2)
|
|
|
|
5-> simplify all
|
|
|
|
1
|
|
#1: b = ((-1)^n*a)^-------
|
|
(1 - n)
|
|
|
|
|
|
(2 - n)
|
|
(y^-------)
|
|
(n - 1)
|
|
#2: x = ---------------------------
|
|
n 1
|
|
((n^-------) - (n^-------))
|
|
(n - 1) (n - 1)
|
|
|
|
|
|
(b + a)*(1 + x)
|
|
(x^2 + ---------------)
|
|
(x^n*(c + d))
|
|
#3: y = (x^(m - 1)) + -----------------------
|
|
(x^2 + x)
|
|
|
|
|
|
(27 - (5*x^2))
|
|
#4: y = ----------------------------------------------
|
|
((4*x^3) - x^5 + (12*x^2) - (3*(x^4 + x)) - 9)
|
|
|
|
|
|
#5: ((1 + x)^2)*((x - 1)^4)
|
|
|
|
5-> 1
|
|
|
|
1
|
|
#1: b = ((-1)^n*a)^-------
|
|
(1 - n)
|
|
|
|
1-> solve verifiable a
|
|
Solving equation #1 for a with required verification...
|
|
Solve and "repeat simplify quick" successful:
|
|
|
|
(b^(1 - n))
|
|
#1: a = -----------
|
|
(-1)^n
|
|
|
|
Solution verified.
|
|
1-> 2
|
|
|
|
(2 - n)
|
|
(y^-------)
|
|
(n - 1)
|
|
#2: x = ---------------------------
|
|
n 1
|
|
((n^-------) - (n^-------))
|
|
(n - 1) (n - 1)
|
|
|
|
2-> solve verifiable y
|
|
Solving equation #2 for y with required verification...
|
|
Solve and "repeat simplify quick" successful:
|
|
|
|
1
|
|
#2: y = (((x*(n - 1))^(n - 1))*n)^-------
|
|
(2 - n)
|
|
|
|
Solution verified.
|
|
2-> 1/(x+y)
|
|
|
|
1
|
|
#6: -------
|
|
(x + y)
|
|
|
|
6-> taylor x, 5, 0
|
|
Taylor series with respect to x, simplified...
|
|
5 non-zero derivatives applied.
|
|
|
|
1 x x^2 x^3 x^4 x^5
|
|
#7: - - --- + --- - --- + --- - ---
|
|
y y^2 y^3 y^4 y^5 y^6
|
|
|
|
7-> fraction
|
|
|
|
(y^5 + (x^2*y^3) + (x^4*y) - x^5 - (x^3*y^2) - (x*y^4))
|
|
#7: -------------------------------------------------------
|
|
y^6
|
|
|
|
7-> simplify fraction
|
|
|
|
(y^5 - (y^4*x) + (y^3*x^2) - (y^2*x^3) + (y*x^4) - x^5)
|
|
#7: -------------------------------------------------------
|
|
y^6
|
|
|
|
7-> simplify
|
|
|
|
x^5
|
|
(x^4 - ---)
|
|
y
|
|
(----------- - x^3)
|
|
y
|
|
(x^2 + -------------------)
|
|
y
|
|
(--------------------------- - x)
|
|
y
|
|
(1 + ---------------------------------)
|
|
y
|
|
#7: ---------------------------------------
|
|
y
|
|
|
|
Successfully finished reading script file "fix2.in".
|
|
7-> read fix5
|
|
7-> clear all
|
|
1-> a = (x+1/2^.5)^3
|
|
|
|
1
|
|
#1: a = (x + -----)^3
|
|
1
|
|
(2^-)
|
|
2
|
|
|
|
1-> a = (b+((c+1)^0.5))^3
|
|
|
|
1
|
|
#2: a = (b + ((c + 1)^-))^3
|
|
2
|
|
|
|
2-> a = b*c*x*((((x^2)*c)+(b^4))^3)*(x+c)
|
|
|
|
#3: a = b*c*x*(((x^2*c) + b^4)^3)*(x + c)
|
|
|
|
3-> a = (((b^2)+x)^3)*((1/x)+x)*b
|
|
|
|
1
|
|
#4: a = ((b^2 + x)^3)*(- + x)*b
|
|
x
|
|
|
|
4-> a = b*(((1/b)+(1/c))^3)
|
|
|
|
1 1
|
|
#5: a = b*((- + -)^3)
|
|
b c
|
|
|
|
5-> a = (b^2)*(((1/b)+(1/c))^3)
|
|
|
|
1 1
|
|
#6: a = b^2*((- + -)^3)
|
|
b c
|
|
|
|
6-> a = (b^2)*((b-c)^3)
|
|
|
|
#7: a = b^2*((b - c)^3)
|
|
|
|
7-> simplify all
|
|
|
|
1
|
|
(((2*x) + (2^-))^3)
|
|
2
|
|
#1: a = -------------------
|
|
8
|
|
|
|
|
|
1
|
|
#2: a = (b + ((c + 1)^-))^3
|
|
2
|
|
|
|
|
|
#3: a = ((b^4 + (c*x^2))^3)*b*((c*x^2) + (c^2*x))
|
|
|
|
|
|
1
|
|
#4: a = ((b^2 + x)^3)*b*(- + x)
|
|
x
|
|
|
|
|
|
1 1
|
|
#5: a = ((- + -)^3)*b
|
|
c b
|
|
|
|
|
|
b
|
|
((1 + -)^3)
|
|
c
|
|
#6: a = -----------
|
|
b
|
|
|
|
|
|
#7: a = b^2*((b - c)^3)
|
|
|
|
Successfully finished reading script file "fix5.in".
|
|
7-> read fix7
|
|
7-> ; Algebraic fractions test
|
|
7-> clear all
|
|
1-> (c+a-b)/(b-a)
|
|
|
|
(c + a - b)
|
|
#1: -----------
|
|
(b - a)
|
|
|
|
1-> ((d*(b+c))+(a*(e1+f)))/(e1+f)/(b+c)
|
|
|
|
((d*(b + c)) + (a*(e1 + f)))
|
|
#2: ----------------------------
|
|
((e1 + f)*(b + c))
|
|
|
|
2-> ((((e1^2)+d)*b*((b^2)+2))-e1-f)/b/((b^2)+2)/(e1+f)
|
|
|
|
(((e1^2 + d)*b*(b^2 + 2)) - e1 - f)
|
|
#3: -----------------------------------
|
|
(b*(b^2 + 2)*(e1 + f))
|
|
|
|
3-> ((b*((((e1^2)+d)*((b^2)+2))+(b*(e1+f))))+e1+f)/(e1+f)/b/((b^2)+2)
|
|
|
|
((b*(((e1^2 + d)*(b^2 + 2)) + (b*(e1 + f)))) + e1 + f)
|
|
#4: ------------------------------------------------------
|
|
((e1 + f)*b*(b^2 + 2))
|
|
|
|
4-> ((1/(x^(1+n)))+(1/(x^n))+(x^(m-1))+(x^m)+x)/(x+1)
|
|
|
|
1 1
|
|
(----------- + --- + (x^(m - 1)) + x^m + x)
|
|
(x^(1 + n)) x^n
|
|
#5: -------------------------------------------
|
|
(x + 1)
|
|
|
|
5-> (1/(a + b)) + (1/(b + c))
|
|
|
|
1 1
|
|
#6: ------- + -------
|
|
(a + b) (b + c)
|
|
|
|
6-> ((x - 1)^2)*(2 + x)/((1 + x)*((x - 3)^2))
|
|
|
|
((x - 1)^2)*(2 + x)
|
|
#7: ---------------------
|
|
((1 + x)*((x - 3)^2))
|
|
|
|
7-> simplify all
|
|
|
|
c
|
|
#1: ------- - 1
|
|
(b - a)
|
|
|
|
|
|
d a
|
|
#2: -------- + -------
|
|
(e1 + f) (b + c)
|
|
|
|
|
|
(d + e1^2) 1
|
|
#3: ---------- - -------------
|
|
(e1 + f) (b^3 + (2*b))
|
|
|
|
|
|
(d + e1^2) (1 + b^2)
|
|
#4: ---------- + -------------
|
|
(e1 + f) (b^3 + (2*b))
|
|
|
|
|
|
1
|
|
(x^m + ---)
|
|
x^n x
|
|
#5: ----------- + -------
|
|
x (x + 1)
|
|
|
|
|
|
1 1
|
|
#6: ------- + -------
|
|
(b + c) (b + a)
|
|
|
|
|
|
(1 - x)
|
|
(-------^2)*(2 + x)
|
|
(3 - x)
|
|
#7: -------------------
|
|
(1 + x)
|
|
|
|
7-> fraction all
|
|
|
|
(c - b + a)
|
|
#1: -----------
|
|
(b - a)
|
|
|
|
|
|
((d*(b + c)) + (a*(e1 + f)))
|
|
#2: ----------------------------
|
|
((c + b)*(e1 + f))
|
|
|
|
|
|
(((d + e1^2)*(b^3 + (2*b))) - e1 - f)
|
|
#3: -------------------------------------
|
|
(((2*b) + b^3)*(e1 + f))
|
|
|
|
|
|
(((d + e1^2)*(b^3 + (2*b))) + e1 + f + (b^2*(e1 + f)))
|
|
#4: ------------------------------------------------------
|
|
(((2*b) + b^3)*(e1 + f))
|
|
|
|
|
|
((x^n*((x^m*(x + 1)) + x^2)) + x + 1)
|
|
#5: -------------------------------------
|
|
(x^n*(x^2 + x))
|
|
|
|
|
|
((2*b) + a + c)
|
|
#6: -----------------
|
|
((b + c)*(b + a))
|
|
|
|
|
|
(2 + x)*((1 - x)^2)
|
|
#7: ---------------------
|
|
((1 + x)*((3 - x)^2))
|
|
|
|
7-> simplify fraction all
|
|
|
|
(c - b + a)
|
|
#1: -----------
|
|
(b - a)
|
|
|
|
|
|
((d*(b + c)) + (a*(e1 + f)))
|
|
#2: ----------------------------
|
|
((e1 + f)*(c + b))
|
|
|
|
|
|
(((d + e1^2)*(b^3 + (2*b))) - e1 - f)
|
|
#3: -------------------------------------
|
|
((e1 + f)*((2*b) + b^3))
|
|
|
|
|
|
(((d + e1^2)*(b^3 + (2*b))) + (b^2*(e1 + f)) + e1 + f)
|
|
#4: ------------------------------------------------------
|
|
((e1 + f)*((2*b) + b^3))
|
|
|
|
|
|
1
|
|
(x^m + ---)
|
|
x^n 1
|
|
(x^m + ----------- + --- + x)
|
|
x x^n
|
|
#5: -----------------------------
|
|
(x + 1)
|
|
|
|
|
|
((2*b) + a + c)
|
|
#6: -----------------
|
|
((b + c)*(b + a))
|
|
|
|
|
|
((1 - x)^2)*(2 + x)
|
|
#7: ---------------------
|
|
(((3 - x)^2)*(1 + x))
|
|
|
|
7-> simplify all
|
|
|
|
c
|
|
#1: ------- - 1
|
|
(b - a)
|
|
|
|
|
|
d a
|
|
#2: -------- + -------
|
|
(e1 + f) (c + b)
|
|
|
|
|
|
(d + e1^2) 1
|
|
#3: ---------- - -------------
|
|
(e1 + f) ((2*b) + b^3)
|
|
|
|
|
|
(d + e1^2) (1 + b^2)
|
|
#4: ---------- + -------------
|
|
(e1 + f) ((2*b) + b^3)
|
|
|
|
|
|
1
|
|
(x^m + ---)
|
|
x^n x
|
|
#5: ----------- + -------
|
|
x (x + 1)
|
|
|
|
|
|
1 1
|
|
#6: ------- + -------
|
|
(b + c) (b + a)
|
|
|
|
|
|
(1 - x)
|
|
(-------^2)*(2 + x)
|
|
(3 - x)
|
|
#7: -------------------
|
|
(1 + x)
|
|
|
|
Successfully finished reading script file "fix7.in".
|
|
7-> read fix8
|
|
7-> clear all
|
|
1-> a = (((b^2)*(x^2))+(4*(b^2)*x)+(b^2)+(2*(b^3)*x)+(2*(b^3))+(b^4)+(2*b*(x^2))+(2*b*x)+(x^2))/(((b^3)*(x^2))+(2*(b^4)*x)+(b^5))
|
|
|
|
((b^2*x^2) + (4*b^2*x) + b^2 + (2*b^3*x) + (2*b^3) + b^4 + (2*b*x^2) + (2*b*x) + x^2)
|
|
#1: a = -------------------------------------------------------------------------------------
|
|
((b^3*x^2) + (2*b^4*x) + b^5)
|
|
|
|
1-> y = (((b+1)^0.5)*((b^2.5)+c))+((((b^2)+b)^0.5)*a)
|
|
|
|
1 5 1
|
|
#2: y = (((b + 1)^-)*((b^-) + c)) + (((b^2 + b)^-)*a)
|
|
2 2 2
|
|
|
|
2-> a = (b^(1-n))/(1+(b^(m-n)))
|
|
|
|
(b^(1 - n))
|
|
#3: a = -----------------
|
|
(1 + (b^(m - n)))
|
|
|
|
3-> a = (((b^2)+(b*(c^(1-n)))+(b^0.5))/(b^n)/(1+(b^(m-n))))^0.5
|
|
|
|
1
|
|
(b^2 + (b*(c^(1 - n))) + (b^-))
|
|
2 1
|
|
#4: a = -------------------------------^-
|
|
(b^n*(1 + (b^(m - n)))) 2
|
|
|
|
4-> simplify all
|
|
|
|
1
|
|
((- + 1)^2)
|
|
b
|
|
#1: a = -----------
|
|
b
|
|
|
|
|
|
1 5 1
|
|
#2: y = ((b + 1)^-)*((b^-) + ((b^-)*a) + c)
|
|
2 2 2
|
|
|
|
|
|
b
|
|
#3: a = -----------
|
|
(b^n + b^m)
|
|
|
|
|
|
1
|
|
(b^2 + (b*(c^(1 - n))) + (b^-))
|
|
2 1
|
|
#4: a = -------------------------------^-
|
|
(b^n + b^m) 2
|
|
|
|
Successfully finished reading script file "fix8.in".
|
|
4-> read fix9
|
|
4-> clear all
|
|
1-> ((1/b) + (1/c) + (1/d))^3
|
|
|
|
1 1 1
|
|
#1: (- + - + -)^3
|
|
b c d
|
|
|
|
1-> ((+/-1000*(b!^4)+/-x)^2)*((1/x)+x)*b
|
|
|
|
1
|
|
#2: (((1000*sign*((b!)^4)) + (sign0*x))^2)*(- + x)*b
|
|
x
|
|
|
|
2-> ((b+(2*i))^5)
|
|
|
|
#3: (b + (2*i))^5
|
|
|
|
3-> (((1/(b^2))+c)^2)*((1/b)+(c*b))
|
|
|
|
1 1
|
|
#4: ((--- + c)^2)*(- + (c*b))
|
|
b^2 b
|
|
|
|
4-> (6*(b^0.5)-3)^3
|
|
|
|
1
|
|
#5: ((6*(b^-)) - 3)^3
|
|
2
|
|
|
|
5-> (2-(4/(c-b)))^3
|
|
|
|
4
|
|
#6: (2 - -------)^3
|
|
(c - b)
|
|
|
|
6-> (((e*((2*(x^3)) + 24 + (x!) - zy)) - pi)/e)^2
|
|
|
|
((e*((2*x^3) + 24 + x! - zy)) - pi)
|
|
#7: -----------------------------------^2
|
|
e
|
|
|
|
7-> (2+3x)^3
|
|
|
|
#8: (2 + (3*x))^3
|
|
|
|
8-> simplify all
|
|
|
|
1 1 1
|
|
#1: (- + - + -)^3
|
|
b d c
|
|
|
|
|
|
1
|
|
#2: ((x + (1000*sign*sign0*((b!)^4)))^2)*b*(- + x)
|
|
x
|
|
|
|
|
|
#3: (b + (2*i))^5
|
|
|
|
|
|
1 1
|
|
#4: ((--- + c)^2)*(- + (c*b))
|
|
b^2 b
|
|
|
|
|
|
1
|
|
#5: -27*((1 - (2*(b^-)))^3)
|
|
2
|
|
|
|
|
|
2
|
|
#6: 8*((1 - -------)^3)
|
|
(c - b)
|
|
|
|
|
|
pi
|
|
#7: (zy - 24 + -- - x! - (2*x^3))^2
|
|
e
|
|
|
|
|
|
#8: (2 + (3*x))^3
|
|
|
|
8-> display factor all
|
|
|
|
1 1 1
|
|
#1: (- + - + -)^3
|
|
b d c
|
|
|
|
|
|
1
|
|
#2: ((x + ((2^3*5^3)*sign*sign0*((b!)^(2^2))))^2)*b*(- + x)
|
|
x
|
|
|
|
|
|
#3: (b + (2*i))^5
|
|
|
|
|
|
1 1
|
|
#4: ((--- + c)^2)*(- + (c*b))
|
|
b^2 b
|
|
|
|
|
|
1
|
|
#5: (3^3*-1)*((1 - (2*(b^-)))^3)
|
|
2
|
|
|
|
|
|
2
|
|
#6: 2^3*((1 - -------)^3)
|
|
(c - b)
|
|
|
|
|
|
pi
|
|
#7: (zy - (2^3*3) + -- - x! - (2*x^3))^2
|
|
e
|
|
|
|
|
|
#8: (2 + (3*x))^3
|
|
|
|
Successfully finished reading script file "fix9.in".
|
|
Successfully finished reading script file "test.in".
|
|
8-> clear all
|
|
1-> read fraction
|
|
1->
|
|
1-> ; Algebraic fractions tutorial.
|
|
1-> ; This Mathomatic input shows how "simplify fraction" and "unfactor fraction" work.
|
|
1-> 1/x+1/y+1/z
|
|
|
|
1 1 1
|
|
#1: - + - + -
|
|
x y z
|
|
|
|
1-> fraction ; Convert expressions with algebraic fractions into a single fraction.
|
|
|
|
((y*z) + (x*(z + y)))
|
|
#1: ---------------------
|
|
(x*y*z)
|
|
|
|
1-> simplify
|
|
|
|
1 1 1
|
|
#1: - + - + -
|
|
x y z
|
|
|
|
1-> simplify fraction ; does the same as the above fraction command, but simplifies more.
|
|
|
|
((z*y) + (x*(z + y)))
|
|
#1: ---------------------
|
|
(x*y*z)
|
|
|
|
1-> unfactor ; Expand the products of sums.
|
|
|
|
((z*y) + (x*z) + (x*y))
|
|
#1: -----------------------
|
|
(x*y*z)
|
|
|
|
1-> unfactor fraction ; Fully expand algebraic fractions by also expanding division of sums.
|
|
|
|
1 1 1
|
|
#1: - + - + -
|
|
x y z
|
|
|
|
Successfully finished reading script file "fraction.in".
|
|
1-> clear all
|
|
1-> read pie
|
|
1->
|
|
1-> ; This is the famous Bailey-Borwein-Plouffe (BBP) formula.
|
|
1-> ; Sum this n = 0 to infinity to compute pi.
|
|
1-> ; This is especially useful for calculating pi in hexadecimal.
|
|
1-> ; One hexadecimal digit of pi is generated with each iteration.
|
|
1-> ((4/((8*n)+1))-(2/((8*n)+4))-(1/((8*n)+5))-(1/((8*n)+6)))/(16^n)
|
|
|
|
4 2 1 1
|
|
(----------- - ----------- - ----------- - -----------)
|
|
((8*n) + 1) ((8*n) + 4) ((8*n) + 5) ((8*n) + 6)
|
|
#1: -------------------------------------------------------
|
|
16^n
|
|
|
|
1-> simplify ; BBP simplifies to the ratio of two polynomials.
|
|
|
|
((120*n^2) + (151*n) + 47)
|
|
#1: ----------------------------------------------------------
|
|
(16^n*((512*n^4) + (1024*n^3) + (712*n^2) + (194*n) + 15))
|
|
|
|
1-> sum n=0 to 10 ; Numerically sum BBP from n = 0 to 10 in steps of 1.
|
|
|
|
#2: 3.1415926535898
|
|
|
|
1-> pi ; The digits should be the same.
|
|
Calculating...
|
|
answer = 3.1415926535898
|
|
3-> repeat echo *
|
|
*******************************************************************************
|
|
3-> x^n/n! ; Sum this n = 0 to infinity to compute (e^x).
|
|
|
|
x^n
|
|
#4: ---
|
|
n!
|
|
|
|
4-> replace x with 1 ; Sum this n = 0 to infinity to compute e:
|
|
|
|
1
|
|
#4: --
|
|
n!
|
|
|
|
4-> sum n=0 to 20 ; Numerically sum from n = 0 to 20 in steps of 1.
|
|
|
|
#5: 2.718281828459
|
|
|
|
4-> e ; The digits should be the same.
|
|
Calculating...
|
|
answer = 2.718281828459
|
|
6-> repeat echo *
|
|
*******************************************************************************
|
|
6-> ; Euler's identity is made of these most important universal constants:
|
|
6-> e^(pi*i)+1=0
|
|
|
|
#7: (e^(pi*i)) + 1 = 0
|
|
|
|
7-> simplify ; An identity is when the LHS is identical to the RHS:
|
|
|
|
#7: 0 = 0
|
|
|
|
Successfully finished reading script file "pie.in".
|
|
7-> 1
|
|
|
|
((120*n^2) + (151*n) + 47)
|
|
#1: ----------------------------------------------------------
|
|
(16^n*((512*n^4) + (1024*n^3) + (712*n^2) + (194*n) + 15))
|
|
|
|
1-> fraction
|
|
|
|
((120*n^2) + (151*n) + 47)
|
|
#1: ----------------------------------------------------------
|
|
(16^n*((512*n^4) + (1024*n^3) + (712*n^2) + (194*n) + 15))
|
|
|
|
1-> read demo
|
|
1-> clear all
|
|
1-> ; Some symbolic differentiation examples follow.
|
|
1->
|
|
1-> ; Take the derivative of the absolute value function:
|
|
1-> |x|
|
|
|
|
1
|
|
#1: (x^2)^-
|
|
2
|
|
|
|
1-> derivative ; The result is the sign function sgn(x), which gives the sign of x.
|
|
Differentiating with respect to x and simplifying...
|
|
|
|
x
|
|
#2: ---------
|
|
1
|
|
((x^2)^-)
|
|
2
|
|
|
|
2-> repeat echo *
|
|
*******************************************************************************
|
|
2-> ; Mathomatic can differentiate anything that doesn't require symbolic logarithms.
|
|
2-> y=e^(1+1/x)
|
|
|
|
1
|
|
#3: y = e^(1 + -)
|
|
x
|
|
|
|
3-> derivative ; The first order derivative is:
|
|
Differentiating the RHS with respect to x and simplifying...
|
|
|
|
1
|
|
-(e^(1 + -))
|
|
x
|
|
#4: y' = ------------
|
|
x^2
|
|
|
|
4-> derivative ; The second order derivative is:
|
|
Differentiating the RHS with respect to x and simplifying...
|
|
|
|
1 1
|
|
(e^(- + 1))*(- + 2)
|
|
x x
|
|
#5: y'' = -------------------
|
|
x^3
|
|
|
|
5-> expand fraction ; Perhaps easier to read:
|
|
|
|
1 1
|
|
(e^(- + 1)) 2*(e^(- + 1))
|
|
x x
|
|
#5: y'' = ----------- + -------------
|
|
x^4 x^3
|
|
|
|
5-> repeat echo *
|
|
*******************************************************************************
|
|
5-> ; A Taylor series demonstration:
|
|
5-> y=x_new^n ; x_new is what we want, without using the root operator.
|
|
|
|
#6: y = x_new^n
|
|
|
|
6-> x_new ; It is easily solved for in Mathomatic.
|
|
Solve successful:
|
|
|
|
1
|
|
#6: x_new = y^-
|
|
n
|
|
|
|
6-> y ; But we want an algorithm to compute it without using non-integer exponentiation.
|
|
Solve successful:
|
|
|
|
#6: y = x_new^n
|
|
|
|
6-> taylor x_new, 1, x_old ; build the (nth root of y) iterative approximation formula
|
|
Taylor series of the RHS with respect to x_new, simplified...
|
|
1 non-zero derivative applied.
|
|
|
|
#7: y = x_old^n + (n*(x_old^(n - 1))*x_new) - (n*x_old^n)
|
|
|
|
7-> solve verifiable x_new ; solve for the output variable
|
|
Solving equation #7 for x_new with required verification...
|
|
Solve and "repeat simplify quick" successful:
|
|
|
|
y
|
|
(------- - 1)
|
|
x_old^n
|
|
#7: x_new = x_old*(------------- + 1)
|
|
n
|
|
|
|
Solution verified.
|
|
7-> ; That is the convergent nth root approximation formula.
|
|
7-> copy ; "calculate x_old 10000" tests this formula, if you would like to see for yourself.
|
|
|
|
y
|
|
(------- - 1)
|
|
x_old^n
|
|
#8: x_new = x_old*(------------- + 1)
|
|
n
|
|
|
|
7-> replace x_old x_new with x ; make x_old (input) and x_new (output) the same
|
|
|
|
y
|
|
(--- - 1)
|
|
x^n
|
|
#7: x = x*(--------- + 1)
|
|
n
|
|
|
|
7-> x ; make sure the formula was correct by solving for x
|
|
Removing possible solution: "x = 0".
|
|
Solve successful:
|
|
|
|
1
|
|
#7: x = y^-
|
|
n
|
|
|
|
7-> repeat echo *
|
|
*******************************************************************************
|
|
7-> ; Another Taylor series demo:
|
|
7-> e^x ; enter the exponential function
|
|
|
|
#9: e^x
|
|
|
|
9-> taylor x, 10, 0 ; generate a 10th order taylor series of the exponential function
|
|
Taylor series with respect to x, simplified...
|
|
10 non-zero derivatives applied.
|
|
|
|
x^2 x^3 x^4 x^5 x^6 x^7 x^8 x^9 x^10
|
|
#10: 1 + x + --- + --- + --- + --- + --- + ---- + ----- + ------ + -------
|
|
2 6 24 120 720 5040 40320 362880 3628800
|
|
|
|
10-> laplace x ; do a Laplace transform on it
|
|
|
|
1 1 1 1 1 1 1 1 1 1 1
|
|
#11: - + --- + --- + --- + --- + --- + --- + --- + --- + ---- + ----
|
|
x x^2 x^3 x^4 x^5 x^6 x^7 x^8 x^9 x^10 x^11
|
|
|
|
11-> simplify ; show the structure of the result
|
|
|
|
1
|
|
(1 + -)
|
|
x
|
|
(1 + -------)
|
|
x
|
|
(1 + -------------)
|
|
x
|
|
(1 + -------------------)
|
|
x
|
|
(1 + -------------------------)
|
|
x
|
|
(1 + -------------------------------)
|
|
x
|
|
(1 + -------------------------------------)
|
|
x
|
|
(1 + -------------------------------------------)
|
|
x
|
|
(1 + -------------------------------------------------)
|
|
x
|
|
(1 + -------------------------------------------------------)
|
|
x
|
|
#11: -------------------------------------------------------------
|
|
x
|
|
|
|
11-> laplace inverse x ; undo the Laplace transform
|
|
|
|
x^2 x^3 x^4 x^5 x^6 x^7 x^8 x^9 x^10
|
|
#12: 1 + x + --- + --- + --- + --- + --- + ---- + ----- + ------ + -------
|
|
2 6 24 120 720 5040 40320 362880 3628800
|
|
|
|
12-> compare with 10 ; check the result
|
|
Comparing #10 with #12...
|
|
Expressions are identical.
|
|
Successfully finished reading script file "demo.in".
|
|
12-> read limits
|
|
12->
|
|
12-> ; Tests for the experimental limit command.
|
|
12->
|
|
12-> clear all
|
|
1-> ; find the derivative of:
|
|
1-> y = 1/(x^.5)
|
|
|
|
1
|
|
#1: y = -----
|
|
1
|
|
(x^-)
|
|
2
|
|
|
|
1-> ; using the difference quotient:
|
|
1-> y' = (1/(x+delta_x)^.5-1/x^.5)/delta_x
|
|
|
|
1 1
|
|
(----------------- - -----)
|
|
1 1
|
|
((x + delta_x)^-) (x^-)
|
|
2 2
|
|
#2: y' = ---------------------------
|
|
delta_x
|
|
|
|
2-> limit delta_x 0 ; take the limit as delta_x (change in x) goes to 0
|
|
Taking the limit as delta_x goes to 0
|
|
Solving...
|
|
Equation is a degree 0.5 polynomial equation in delta_x.
|
|
Raising both equation sides to the power of 2 and expanding...
|
|
Equation is a degree 3 polynomial equation in delta_x.
|
|
Removing possible solution: "delta_x = 0".
|
|
Equation is a degree 2 polynomial equation in delta_x.
|
|
Equation was solved with the quadratic formula.
|
|
Equation is a degree 0.5 polynomial equation in y'.
|
|
Raising both equation sides to the power of 2 and expanding...
|
|
|
|
-1
|
|
#3: y' = ---------
|
|
3
|
|
(2*(x^-))
|
|
2
|
|
|
|
2-> 3
|
|
|
|
-1
|
|
#3: y' = ---------
|
|
3
|
|
(2*(x^-))
|
|
2
|
|
|
|
3-> integrate x ; take the antiderivative to see if it's right
|
|
Only the RHS will be transformed.
|
|
Integrating the RHS with respect to x and simplifying...
|
|
|
|
1
|
|
#4: y = -----
|
|
1
|
|
(x^-)
|
|
2
|
|
|
|
4-> compare 1
|
|
Comparing #1 with #4...
|
|
Equations are identical.
|
|
4->
|
|
4-> ; test infinity limits:
|
|
4-> 2x/(x+1)
|
|
|
|
2*x
|
|
#5: -------
|
|
(x + 1)
|
|
|
|
5-> limit x inf ; answer should be 2
|
|
Taking the limit as x goes to inf
|
|
Solving...
|
|
|
|
#6: limit = 2
|
|
|
|
5->
|
|
5-> (3x+100-a)/(x-b)
|
|
|
|
((3*x) + 100 - a)
|
|
#7: -----------------
|
|
(x - b)
|
|
|
|
7-> limit x inf ; answer should be 3
|
|
Taking the limit as x goes to inf
|
|
Solving...
|
|
|
|
#8: limit = 3
|
|
|
|
7->
|
|
7-> (((x^2) - (5*x) + 6)^(1/2)) - x
|
|
|
|
1
|
|
#9: ((x^2 - (5*x) + 6)^-) - x
|
|
2
|
|
|
|
9-> limit x inf ; answer should be -5/2
|
|
Taking the limit as x goes to inf
|
|
Solving...
|
|
Equation is a degree 0.5 polynomial equation in x.
|
|
Raising both equation sides to the power of 2 and expanding...
|
|
Equation is a degree 2 polynomial equation in x.
|
|
Equation was solved with the quadratic formula.
|
|
|
|
-5
|
|
#10: limit = --
|
|
2
|
|
|
|
9->
|
|
9-> x*((x^2+1)^.5-x)
|
|
|
|
1
|
|
#11: x*(((x^2 + 1)^-) - x)
|
|
2
|
|
|
|
11-> limit x inf ; answer should be 1/2
|
|
Taking the limit as x goes to inf
|
|
Solving...
|
|
Equation is a degree 1.5 polynomial equation in x.
|
|
Raising both equation sides to the power of 2 and expanding...
|
|
Equation is a degree 3 polynomial equation in x.
|
|
Removing possible solution: "x = 0".
|
|
|
|
1
|
|
#12: limit = -
|
|
2
|
|
|
|
11->
|
|
11-> 1/x^2+1/x
|
|
|
|
1 1
|
|
#13: --- + -
|
|
x^2 x
|
|
|
|
13-> limit y inf ; result should be original expression with a warning.
|
|
Warning: Limit variable not found; answer is original expression.
|
|
|
|
1 1
|
|
#13: limit = --- + -
|
|
x^2 x
|
|
|
|
13-> limit x inf ; result should be 0
|
|
Taking the limit as x goes to inf
|
|
Solving...
|
|
Equation is a degree 2 polynomial equation in x.
|
|
Equation was solved with the quadratic formula.
|
|
|
|
#14: limit = 0
|
|
|
|
13->
|
|
13-> ((2*(x^2)) - x - 6)/((x^2) + (2*x) - 8)
|
|
|
|
((2*x^2) - x - 6)
|
|
#15: -----------------
|
|
(x^2 + (2*x) - 8)
|
|
|
|
15-> limit x inf ; result should be 2
|
|
Taking the limit as x goes to inf
|
|
Solving...
|
|
|
|
#16: limit = 2
|
|
|
|
15->
|
|
15-> x^2+x
|
|
|
|
#17: x^2 + x
|
|
|
|
17-> limit x 0 ; result should be 0
|
|
Taking the limit as x goes to 0
|
|
Solving...
|
|
Equation is a degree 2 polynomial equation in x.
|
|
Equation was solved with the quadratic formula.
|
|
|
|
#18: limit = 0
|
|
|
|
17-> limit x 2 ; result should be 6
|
|
Taking the limit as x goes to 2
|
|
Solving...
|
|
Equation is a degree 2 polynomial equation in x.
|
|
Equation was solved with the quadratic formula.
|
|
|
|
#19: limit = 6
|
|
|
|
17-> display
|
|
|
|
#17: limit = x^2 + x
|
|
|
|
17-> ; The following currently gives the wrong answer:
|
|
17-> limit x inf ; result should be inf
|
|
Taking the limit as x goes to inf
|
|
Solving...
|
|
Equation is a degree 2 polynomial equation in x.
|
|
Equation was solved with the quadratic formula.
|
|
|
|
#20: limit = 0
|
|
|
|
17-> ; The following currently gives errors:
|
|
17-> y=x+1/x
|
|
|
|
1
|
|
#21: y = x + -
|
|
x
|
|
|
|
21-> :limit x 0 ; result should be inf
|
|
Taking the limit as x goes to 0
|
|
Solving...
|
|
Equation is a degree 2 polynomial equation in x.
|
|
Equation was solved with the quadratic formula.
|
|
Equation is a degree 0.5 polynomial equation in y.
|
|
Raising both equation sides to the power of 2 and expanding...
|
|
There are no possible values for the solve variable.
|
|
Can't take the limit because solve failed.
|
|
21-> :limit x inf; result should be inf
|
|
Taking the limit as x goes to inf
|
|
Solving...
|
|
Equation is a degree 2 polynomial equation in x.
|
|
Equation was solved with the quadratic formula.
|
|
Equation is a degree 0.5 polynomial equation in y.
|
|
Raising both equation sides to the power of 2 and expanding...
|
|
There are no possible values for the solve variable.
|
|
Can't take the limit because solve failed.
|
|
Successfully finished reading script file "limits.in".
|
|
21-> ; read how_limit_works
|
|
21-> read test3
|
|
21-> ; Test solving linear equations with Mathomatic.
|
|
21->
|
|
21-> read linear
|
|
21->
|
|
21-> ; Combine 3 simultaneous linear equations with 3 unknowns (x, y, z).
|
|
21-> ; Solve for all 3 unknowns using the eliminate, solve, and simplify commands.
|
|
21->
|
|
21-> clear all ; restart Mathomatic
|
|
1-> ; enter all 3 equations:
|
|
1-> d1=a1*x+b1*y+c1*z
|
|
|
|
#1: d1 = (a1*x) + (b1*y) + (c1*z)
|
|
|
|
1-> d2=a2*x+b2*y+c2*z
|
|
|
|
#2: d2 = (a2*x) + (b2*y) + (c2*z)
|
|
|
|
2-> d3=a3*x+b3*y+c3*z
|
|
|
|
#3: d3 = (a3*x) + (b3*y) + (c3*z)
|
|
|
|
3-> 2 ; select equation number 2 as the current equation
|
|
|
|
#2: d2 = (a2*x) + (b2*y) + (c2*z)
|
|
|
|
2-> eliminate x ; eliminate variable x from the current equation
|
|
Solving equation #1 for x and substituting into the current equation...
|
|
|
|
a2*((b1*y) + (c1*z) - d1)
|
|
#2: d2 = (b2*y) - ------------------------- + (c2*z)
|
|
a1
|
|
|
|
2-> 3 ; select equation number 3
|
|
|
|
#3: d3 = (a3*x) + (b3*y) + (c3*z)
|
|
|
|
3-> eliminate x y ; eliminate variables x and then y from the current equation
|
|
Eliminating variable x using solved equation #1...
|
|
Solving equation #2 for y and substituting into the current equation...
|
|
|
|
b1*((z*((c2*a1) - (a2*c1))) + (a2*d1) - (d2*a1))
|
|
a3*(------------------------------------------------ + (c1*z) - d1)
|
|
b3*((z*((c2*a1) - (a2*c1))) + (a2*d1) - (d2*a1)) ((a2*b1) - (b2*a1))
|
|
#3: d3 = ------------------------------------------------ - ------------------------------------------------------------------- + (c3*z)
|
|
((a2*b1) - (b2*a1)) a1
|
|
|
|
3-> solve for z
|
|
Solve successful:
|
|
|
|
((d3*((a2*b1) - (a1*b2))) + (b3*((d2*a1) - (a2*d1))) + (a3*((b2*d1) - (b1*d2))))
|
|
#3: z = --------------------------------------------------------------------------------
|
|
((b3*((c2*a1) - (a2*c1))) + (a3*((b2*c1) - (b1*c2))) + (c3*((a2*b1) - (a1*b2))))
|
|
|
|
3-> 2 ; select equation number 2
|
|
|
|
((z*((c2*a1) - (a2*c1))) + (a2*d1) - (d2*a1))
|
|
#2: y = ---------------------------------------------
|
|
((a2*b1) - (b2*a1))
|
|
|
|
2-> eliminate z using 3 ; find y by combining equation numbers 2 and 3
|
|
Eliminating variable z using solved equation #3...
|
|
|
|
((d3*((a2*b1) - (a1*b2))) + (b3*((d2*a1) - (a2*d1))) + (a3*((b2*d1) - (b1*d2))))*((c2*a1) - (a2*c1))
|
|
(---------------------------------------------------------------------------------------------------- + (a2*d1) - (d2*a1))
|
|
((b3*((c2*a1) - (a2*c1))) + (a3*((b2*c1) - (b1*c2))) + (c3*((a2*b1) - (a1*b2))))
|
|
#2: y = --------------------------------------------------------------------------------------------------------------------------
|
|
((a2*b1) - (b2*a1))
|
|
|
|
2-> simplify
|
|
|
|
((a1*((d3*c2) - (d2*c3))) + (d1*((a2*c3) - (c2*a3))) + (c1*((d2*a3) - (d3*a2))))
|
|
#2: y = --------------------------------------------------------------------------------
|
|
((a1*((b3*c2) - (c3*b2))) + (c1*((a3*b2) - (b3*a2))) + (b1*((c3*a2) - (a3*c2))))
|
|
|
|
2-> 1 ; select equation number 1
|
|
|
|
-((b1*y) + (c1*z) - d1)
|
|
#1: x = -----------------------
|
|
a1
|
|
|
|
1-> eliminate z using 3, y using 2; find x
|
|
Eliminating variable z using solved equation #3...
|
|
Eliminating variable y using solved equation #2...
|
|
|
|
b1*((a1*((d3*c2) - (d2*c3))) + (d1*((a2*c3) - (c2*a3))) + (c1*((d2*a3) - (d3*a2)))) c1*((d3*((a2*b1) - (a1*b2))) + (b3*((d2*a1) - (a2*d1))) + (a3*((b2*d1) - (b1*d2))))
|
|
-(----------------------------------------------------------------------------------- + ----------------------------------------------------------------------------------- - d1)
|
|
((a1*((b3*c2) - (c3*b2))) + (c1*((a3*b2) - (b3*a2))) + (b1*((c3*a2) - (a3*c2)))) ((b3*((c2*a1) - (a2*c1))) + (a3*((b2*c1) - (b1*c2))) + (c3*((a2*b1) - (a1*b2))))
|
|
#1: x = ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
|
a1
|
|
|
|
1->
|
|
1-> simplify all ; simplify and display all solutions
|
|
|
|
((c1*((b2*d3) - (b3*d2))) + (b1*((c3*d2) - (c2*d3))) + (d1*((b3*c2) - (c3*b2))))
|
|
#1: x = --------------------------------------------------------------------------------
|
|
((a1*((b3*c2) - (c3*b2))) + (c1*((a3*b2) - (b3*a2))) + (b1*((c3*a2) - (a3*c2))))
|
|
|
|
|
|
((a1*((d3*c2) - (d2*c3))) + (d1*((a2*c3) - (c2*a3))) + (c1*((d2*a3) - (d3*a2))))
|
|
#2: y = --------------------------------------------------------------------------------
|
|
((a1*((b3*c2) - (c3*b2))) + (c1*((a3*b2) - (b3*a2))) + (b1*((c3*a2) - (a3*c2))))
|
|
|
|
|
|
((b1*((d3*a2) - (a3*d2))) + (a1*((b3*d2) - (d3*b2))) + (d1*((a3*b2) - (b3*a2))))
|
|
#3: z = --------------------------------------------------------------------------------
|
|
((a1*((b3*c2) - (c3*b2))) + (c1*((a3*b2) - (b3*a2))) + (b1*((c3*a2) - (a3*c2))))
|
|
|
|
Successfully finished reading script file "linear.in".
|
|
1-> copy
|
|
|
|
((c1*((b2*d3) - (b3*d2))) + (b1*((c3*d2) - (c2*d3))) + (d1*((b3*c2) - (c3*b2))))
|
|
#4: x = --------------------------------------------------------------------------------
|
|
((a1*((b3*c2) - (c3*b2))) + (c1*((a3*b2) - (b3*a2))) + (b1*((c3*a2) - (a3*c2))))
|
|
|
|
1-> b2
|
|
Solve successful:
|
|
|
|
((x*((b3*((a1*c2) - (c1*a2))) + (b1*((c3*a2) - (a3*c2))))) - (d2*((b1*c3) - (c1*b3))) - (c2*((d1*b3) - (b1*d3))))
|
|
#1: b2 = -----------------------------------------------------------------------------------------------------------------
|
|
((c1*(d3 - (x*a3))) + (c3*((x*a1) - d1)))
|
|
|
|
1-> c2
|
|
Solve successful:
|
|
|
|
((b2*((c1*(d3 - (x*a3))) + (c3*((x*a1) - d1)))) + (((b1*c3) - (c1*b3))*(d2 - (x*a2))))
|
|
#1: c2 = --------------------------------------------------------------------------------------
|
|
((x*((b3*a1) - (b1*a3))) - (d1*b3) + (b1*d3))
|
|
|
|
1-> b3
|
|
Solve successful:
|
|
|
|
((b1*((c2*(d3 - (x*a3))) + (c3*((x*a2) - d2)))) - (b2*((c1*(d3 - (x*a3))) + (c3*((x*a1) - d1)))))
|
|
#1: b3 = -------------------------------------------------------------------------------------------------
|
|
((c1*((x*a2) - d2)) + (c2*(d1 - (x*a1))))
|
|
|
|
1-> c3
|
|
Solve successful:
|
|
|
|
((b3*((c1*((x*a2) - d2)) + (c2*(d1 - (x*a1))))) + (((x*a3) - d3)*((b1*c2) - (b2*c1))))
|
|
#1: c3 = --------------------------------------------------------------------------------------
|
|
((b1*((x*a2) - d2)) + (b2*(d1 - (x*a1))))
|
|
|
|
1-> b1
|
|
Solve successful:
|
|
|
|
((b2*((c3*(d1 - (x*a1))) + (c1*((x*a3) - d3)))) - (b3*((c1*((x*a2) - d2)) + (c2*(d1 - (x*a1))))))
|
|
#1: b1 = -------------------------------------------------------------------------------------------------
|
|
((c2*((x*a3) - d3)) + (c3*(d2 - (x*a2))))
|
|
|
|
1-> c1
|
|
Solve successful:
|
|
|
|
((b1*((c2*((x*a3) - d3)) + (c3*(d2 - (x*a2))))) + (((x*a1) - d1)*((b2*c3) - (b3*c2))))
|
|
#1: c1 = --------------------------------------------------------------------------------------
|
|
((b2*((x*a3) - d3)) + (b3*(d2 - (x*a2))))
|
|
|
|
1-> d2
|
|
Solve successful:
|
|
|
|
((c1*((b2*((x*a3) - d3)) - (b3*x*a2))) - (((b2*c3) - (b3*c2))*((x*a1) - d1)) + (b1*((c2*(d3 - (x*a3))) + (c3*x*a2))))
|
|
#1: d2 = ---------------------------------------------------------------------------------------------------------------------
|
|
((b1*c3) - (c1*b3))
|
|
|
|
1-> a2
|
|
Solve successful:
|
|
|
|
((d2*((b1*c3) - (c1*b3))) + (((b2*c3) - (b3*c2))*((x*a1) - d1)) + ((d3 - (x*a3))*((c1*b2) - (b1*c2))))
|
|
#1: a2 = ------------------------------------------------------------------------------------------------------
|
|
(x*((b1*c3) - (c1*b3)))
|
|
|
|
1-> d3
|
|
Solve successful:
|
|
|
|
((((b1*c3) - (c1*b3))*((a2*x) - d2)) - (((b2*c3) - (b3*c2))*((x*a1) - d1)))
|
|
#1: d3 = --------------------------------------------------------------------------- + (x*a3)
|
|
((c1*b2) - (b1*c2))
|
|
|
|
1-> a3
|
|
Solve successful:
|
|
|
|
-((((b1*c3) - (c1*b3))*((a2*x) - d2)) - (((b2*c3) - (b3*c2))*((x*a1) - d1)) - (d3*((c1*b2) - (b1*c2))))
|
|
#1: a3 = -------------------------------------------------------------------------------------------------------
|
|
(((c1*b2) - (b1*c2))*x)
|
|
|
|
1-> d1
|
|
Solve successful:
|
|
|
|
((((c1*b2) - (b1*c2))*((a3*x) - d3)) + (((b1*c3) - (c1*b3))*((a2*x) - d2)))
|
|
#1: d1 = -(--------------------------------------------------------------------------- - (x*a1))
|
|
((b2*c3) - (b3*c2))
|
|
|
|
1-> a1
|
|
Solve successful:
|
|
|
|
((d1*((b2*c3) - (b3*c2))) + (((c1*b2) - (b1*c2))*((a3*x) - d3)) + (((b1*c3) - (c1*b3))*((a2*x) - d2)))
|
|
#1: a1 = ------------------------------------------------------------------------------------------------------
|
|
(((b2*c3) - (b3*c2))*x)
|
|
|
|
1-> x
|
|
Solve successful:
|
|
|
|
((d1*((b2*c3) - (b3*c2))) + (d3*((b1*c2) - (c1*b2))) + (d2*((c1*b3) - (b1*c3))))
|
|
#1: x = --------------------------------------------------------------------------------
|
|
((a1*((b2*c3) - (b3*c2))) + (a3*((b1*c2) - (c1*b2))) + (a2*((c1*b3) - (b1*c3))))
|
|
|
|
1-> compare with 4
|
|
Comparing #4 with #1...
|
|
Simplifying both equations...
|
|
Equations are identical.
|
|
Successfully finished reading script file "test3.in".
|
|
1-> read poly
|
|
1->
|
|
1-> ; Combine 3 quadratic polynomial equations with 3 unknown coefficients (a, b, c).
|
|
1-> ; Solve for variables (a), (b), and (c).
|
|
1->
|
|
1-> clear all ; restart Mathomatic
|
|
1-> ; enter all 3 equations:
|
|
1-> y1=a+b*x1+c*x1^2
|
|
|
|
#1: y1 = a + (b*x1) + (c*x1^2)
|
|
|
|
1-> y2=a+b*x2+c*x2^2
|
|
|
|
#2: y2 = a + (b*x2) + (c*x2^2)
|
|
|
|
2-> y3=a+b*x3+c*x3^2
|
|
|
|
#3: y3 = a + (b*x3) + (c*x3^2)
|
|
|
|
3-> 2 ; select equation number 2 as the current equation
|
|
|
|
#2: y2 = a + (b*x2) + (c*x2^2)
|
|
|
|
2-> eliminate a ; eliminate variable (a) from the current equation
|
|
Solving equation #1 for a and substituting into the current equation...
|
|
|
|
#2: y2 = (b*x2) - (x1*(b + (c*x1))) + y1 + (c*x2^2)
|
|
|
|
2-> 3 ; select equation number 3
|
|
|
|
#3: y3 = a + (b*x3) + (c*x3^2)
|
|
|
|
3-> eliminate a b ; eliminate variables (a) and then (b) from the current equation
|
|
Eliminating variable a using solved equation #1...
|
|
Solving equation #2 for b and substituting into the current equation...
|
|
|
|
(y1 - y2 + (c*(x2^2 - x1^2)))*x3 (y1 - y2 + (c*(x2^2 - x1^2)))
|
|
#3: y3 = -------------------------------- - (x1*(----------------------------- + (c*x1))) + y1 + (c*x3^2)
|
|
(x1 - x2) (x1 - x2)
|
|
|
|
3-> solve verifiable c
|
|
Solving equation #3 for c with required verification...
|
|
Solve and "repeat simplify quick" successful:
|
|
|
|
((x1*(y2 - y3)) + (x3*(y1 - y2)) + (x2*(y3 - y1)))
|
|
#3: c = --------------------------------------------------
|
|
((x2 - x1)*(x3 - x1)*(x3 - x2))
|
|
|
|
Solution verified.
|
|
3-> simplify
|
|
|
|
(y1 - y2) (y3 - y2)
|
|
(--------- + ---------)
|
|
(x2 - x1) (x3 - x2)
|
|
#3: c = -----------------------
|
|
(x3 - x1)
|
|
|
|
3-> 2 ; select equation number 2 again
|
|
|
|
(y1 - y2 + (c*(x2^2 - x1^2)))
|
|
#2: b = -----------------------------
|
|
(x1 - x2)
|
|
|
|
2-> eliminate c using 3 ; find (b) by combining equation numbers 2 and 3
|
|
Eliminating variable c using solved equation #3...
|
|
|
|
(y1 - y2) (y3 - y2)
|
|
(--------- + ---------)*(x2^2 - x1^2)
|
|
(x2 - x1) (x3 - x2)
|
|
(y1 - y2 + -------------------------------------)
|
|
(x3 - x1)
|
|
#2: b = -------------------------------------------------
|
|
(x1 - x2)
|
|
|
|
2-> simplify
|
|
|
|
((x1^2*(y2 - y3)) + (x3^2*(y1 - y2)) + (x2^2*(y3 - y1)))
|
|
#2: b = --------------------------------------------------------
|
|
((x2 - x1)*(x3 - x1)*(x2 - x3))
|
|
|
|
2-> 1 ; select equation number 1
|
|
|
|
#1: a = -((x1*(b + (c*x1))) - y1)
|
|
|
|
1-> eliminate c using 3, b using 2 ; find (a)
|
|
Eliminating variable c using solved equation #3...
|
|
Eliminating variable b using solved equation #2...
|
|
|
|
(y1 - y2) (y3 - y2)
|
|
(--------- + ---------)*x1
|
|
((x1^2*(y2 - y3)) + (x3^2*(y1 - y2)) + (x2^2*(y3 - y1))) (x2 - x1) (x3 - x2)
|
|
#1: a = -((x1*(-------------------------------------------------------- + --------------------------)) - y1)
|
|
((x2 - x1)*(x3 - x1)*(x2 - x3)) (x3 - x1)
|
|
|
|
1->
|
|
1-> simplify fraction all ; display all solutions, converting to simple fractions first
|
|
|
|
((x1^2*((y2*x3) - (y3*x2))) + (x1*((x2^2*y3) - (x3^2*y2))) + (y1*((x3^2*x2) - (x3*x2^2))))
|
|
#1: a = ------------------------------------------------------------------------------------------
|
|
((x2 - x1)*(x3 - x1)*(x3 - x2))
|
|
|
|
|
|
((x1^2*(y2 - y3)) + (x3^2*(y1 - y2)) + (x2^2*(y3 - y1)))
|
|
#2: b = --------------------------------------------------------
|
|
((x2 - x1)*(x3 - x1)*(x2 - x3))
|
|
|
|
|
|
((x3*(y1 - y2)) + (x2*(y3 - y1)) + (x1*(y2 - y3)))
|
|
#3: c = --------------------------------------------------
|
|
((x2 - x1)*(x3 - x1)*(x3 - x2))
|
|
|
|
Successfully finished reading script file "poly.in".
|
|
1-> clear all
|
|
1-> read examples
|
|
1->
|
|
1-> ; This is a line comment. This script shows some simple examples of Mathomatic usage.
|
|
1-> ; Mathomatic input files are scripts that may be read in with the "read" command.
|
|
1->
|
|
1-> ; Equations are entered by just typing or pasting them in:
|
|
1-> c^2=a^2+b^2 ; The Pythagorean theorem, "c" squared equals "a" squared plus "b" squared.
|
|
|
|
#1: c^2 = a^2 + b^2
|
|
|
|
1-> ; The entered equation becomes the current equation and is displayed.
|
|
1-> ; The current equation can be solved by simply typing in a variable name:
|
|
1-> c ; which is shorthand for the solve command. Solve for variable "c".
|
|
Solve successful:
|
|
|
|
1
|
|
#1: c = ((a^2 + b^2)^-)*sign
|
|
2
|
|
|
|
1-> ; "sign" variables are special two-valued variables that may only be +1 or -1.
|
|
1-> solve for b ; Another way to solve for a variable, using English.
|
|
Solve successful:
|
|
|
|
1
|
|
#1: b = ((c^2 - a^2)^-)*sign0
|
|
2
|
|
|
|
1-> ; To output programming language code, use the code command:
|
|
1-> code ; C language code is the default.
|
|
b = (pow(((c*c) - (a*a)), (1.0/2.0))*sign0);
|
|
1->
|
|
1-> code java ; Mathomatic can also generate Java
|
|
b = (Math.pow(((c*c) - (a*a)), (1.0/2.0))*sign0);
|
|
1->
|
|
1-> code python ; and Python code.
|
|
b = ((((c*c) - (a*a))**(1.0/2.0))*sign0)
|
|
1->
|
|
1-> repeat echo *
|
|
*******************************************************************************
|
|
1-> a=b+1/b ; Enter another equation; this is actually a quadratic equation.
|
|
|
|
1
|
|
#2: a = b + -
|
|
b
|
|
|
|
2-> 0 ; Solve for zero.
|
|
Solve successful:
|
|
|
|
#2: 0 = (b*(b - a)) + 1
|
|
|
|
2-> unfactor ; Expand, showing that this is a quadratic polynomial equation in "b".
|
|
|
|
#2: 0 = b^2 - (b*a) + 1
|
|
|
|
2-> solve verifiable b ; Require solution verification with the "verifiable" option.
|
|
Solving equation #2 for b with required verification...
|
|
Equation is a degree 2 polynomial equation in b.
|
|
Equation was solved with the quadratic formula.
|
|
Solve and "repeat simplify quick" successful:
|
|
|
|
1
|
|
((((a^2 - 4)^-)*sign) + a)
|
|
2
|
|
#2: b = --------------------------
|
|
2
|
|
|
|
All solutions verified.
|
|
2-> a ; Solve back for "a" and we should get the original equation.
|
|
Equation is a degree 0.5 polynomial equation in a.
|
|
Raising both equation sides to the power of 2 and expanding...
|
|
Solve successful:
|
|
|
|
(b^2 + 1)
|
|
#2: a = ---------
|
|
b
|
|
|
|
2-> simplify ; The simplify command makes expressions simpler and prettier.
|
|
|
|
1
|
|
#2: a = b + -
|
|
b
|
|
|
|
2-> repeat echo *
|
|
*******************************************************************************
|
|
2-> ; Mathomatic is also handy as an advanced calculator.
|
|
2-> ; Expressions without variables entered at the main prompt are instantly evaluated:
|
|
2-> 2+3
|
|
Calculating...
|
|
answer = 5
|
|
3-> 495/44 ; Fractions are always reduced to their simplest form:
|
|
Calculating...
|
|
answer = 11.25, with fractions it is: 45/4
|
|
4-> ; Fractions greater than 1 can easily be displayed as mixed fractions.
|
|
4-> display mixed ; Display above fraction as a mixed fraction:
|
|
|
|
1
|
|
#4: answer = 11 + -
|
|
4
|
|
|
|
4-> display factor ; Integers and fractions are easily factored:
|
|
|
|
(3^2*5)
|
|
#4: answer = -------
|
|
2^2
|
|
|
|
4-> 2^.5 ; The square root of 2, rounded to the default 14 digits:
|
|
Calculating...
|
|
answer = 1.4142135623731
|
|
5->
|
|
5-> repeat echo *
|
|
*******************************************************************************
|
|
5-> ; Symbolic logarithms like log(x) are not implemented, yet.
|
|
5-> 27^y=9 ; An example that uses numeric logarithms.
|
|
|
|
#6: 27^y = 9
|
|
|
|
6-> solve verifiable y ; Require solution verification with the "verifiable" option.
|
|
Solving equation #6 for y with required verification...
|
|
Solve and "repeat simplify quick" successful:
|
|
|
|
2
|
|
#6: y = -
|
|
3
|
|
|
|
Solution verified.
|
|
6->
|
|
6-> repeat echo *
|
|
*******************************************************************************
|
|
6-> 0=2x^2-3x-20 ; A simple quadratic equation, to show how the calculate command works.
|
|
|
|
#7: 0 = (2*x^2) - (3*x) - 20
|
|
|
|
7-> solve verifiable x ; Solve for x, plugging the results into the original equation to verify.
|
|
Solving equation #7 for x with required verification...
|
|
Equation is a degree 2 polynomial equation in x.
|
|
Equation was solved with the quadratic formula.
|
|
Solve and "repeat simplify quick" successful:
|
|
|
|
3 13*sign
|
|
#7: x = - - -------
|
|
4 4
|
|
|
|
All solutions verified.
|
|
7-> calculate ; Expand "sign" variables and approximate the RHS (Right-Hand Side).
|
|
There are 2 solutions.
|
|
|
|
Solution number 1 with sign = 1:
|
|
x = -2.5, with fractions it is: -5/2
|
|
|
|
Solution number 2 with sign = -1:
|
|
x = 4
|
|
7-> ; The calculate command also lets you plug values into a formula with variables, if any.
|
|
7-> display; Display the current equation, showing that it was not modified by calculate.
|
|
|
|
3 13*sign
|
|
#7: x = - - -------
|
|
4 4
|
|
|
|
Successfully finished reading script file "examples.in".
|
|
7-> clear all
|
|
1-> read test1
|
|
1-> y = .6666 - (4*(((10*(pi^2)*(r^3)/((d^2)*g*m*epsilon)) - 1)^(1/2))/15)
|
|
|
|
10*pi^2*r^3 1
|
|
4*((----------------- - 1)^-)
|
|
(d^2*g*m*epsilon) 2
|
|
#1: y = 0.6666 - -----------------------------
|
|
15
|
|
|
|
1-> simplify
|
|
|
|
pi
|
|
10*(--^2)*r^3
|
|
d 1
|
|
4*((------------- - 1)^-)
|
|
(g*m*epsilon) 2
|
|
#1: y = 0.6666 - -------------------------
|
|
15
|
|
|
|
1-> simplify symbolic
|
|
|
|
10*pi^2*r^3 1
|
|
4*((------------- - d^2)^-)
|
|
(g*m*epsilon) 2
|
|
#1: y = 0.6666 - ---------------------------
|
|
(15*d)
|
|
|
|
1-> r
|
|
Solve successful:
|
|
|
|
15*(0.6666 - y)*d
|
|
g*m*epsilon*((-----------------^2) + d^2)
|
|
4 1
|
|
#1: r = -----------------------------------------^-
|
|
(10*pi^2) 3
|
|
|
|
1-> repeat simplify
|
|
|
|
d 2 45*y^2 1
|
|
#1: r = (--^-)*((g*m*epsilon*(0.72487500625 + ------ - (1.8748125*y)))^-)
|
|
pi 3 32 3
|
|
|
|
1-> y
|
|
Equation is a degree 2 polynomial equation in y.
|
|
Equation was solved with the quadratic formula.
|
|
Solve successful:
|
|
|
|
1
|
|
((0.6666*d^2*g*m*epsilon) - (0.25773333555556*((((2.5863941835972*d^2*g*m*epsilon)^2) + (d^2*g*m*epsilon*((10.705236737008*r^3*pi^2) - (7.7599585466463*d^2*g*m*epsilon))))^-)*sign))
|
|
2
|
|
#1: y = -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
|
(d^2*g*m*epsilon)
|
|
|
|
1-> repeat simplify symbolic
|
|
|
|
10*r^3*pi^2 1
|
|
4*((------------- - d^2)^-)*sign
|
|
(g*m*epsilon) 2
|
|
#1: y = 0.6666 - --------------------------------
|
|
(15*d)
|
|
|
|
Successfully finished reading script file "test1.in".
|
|
1-> read test2
|
|
1-> clear all
|
|
1-> y=(a/2)^2/b/4
|
|
|
|
a
|
|
(-^2)
|
|
2
|
|
#1: y = -----
|
|
(4*b)
|
|
|
|
1-> l=f*(b-y)+z*(a-f)
|
|
|
|
#2: l = (f*(b - y)) + (z*(a - f))
|
|
|
|
2-> m=2*(b-y)-a+f
|
|
|
|
#3: m = (2*(b - y)) - a + f
|
|
|
|
3-> n=2*(b-y)+a-f
|
|
|
|
#4: n = (2*(b - y)) + a - f
|
|
|
|
4-> o=l*(1/m-1/n)/2
|
|
|
|
1 1
|
|
l*(- - -)
|
|
m n
|
|
#5: o = ---------
|
|
2
|
|
|
|
5-> eliminate l m n y
|
|
Eliminating variable l using solved equation #2...
|
|
Eliminating variable m using solved equation #3...
|
|
Eliminating variable n using solved equation #4...
|
|
Eliminating variable y using solved equation #1...
|
|
|
|
a
|
|
(-^2)
|
|
2 1 1
|
|
((f*(b - -----)) + (z*(a - f)))*(------------------------- - -------------------------)
|
|
(4*b) a a
|
|
(-^2) (-^2)
|
|
2 2
|
|
((2*(b - -----)) - a + f) ((2*(b - -----)) + a - f)
|
|
(4*b) (4*b)
|
|
#5: o = ---------------------------------------------------------------------------------------
|
|
2
|
|
|
|
5-> simplify
|
|
|
|
4*((f*((16*b^3) - (b*a^2))) + (16*b^2*z*(a - f)))*(a - f)
|
|
#5: o = -----------------------------------------------------------
|
|
((256*b^4) + (b^2*((128*a*f) - (96*a^2) - (64*f^2))) + a^4)
|
|
|
|
5-> copy
|
|
|
|
4*((f*((16*b^3) - (b*a^2))) + (16*b^2*z*(a - f)))*(a - f)
|
|
#6: o = -----------------------------------------------------------
|
|
((256*b^4) + (b^2*((128*a*f) - (96*a^2) - (64*f^2))) + a^4)
|
|
|
|
5-> f
|
|
Equation is a degree 2 polynomial equation in f.
|
|
Equation was solved with the quadratic formula.
|
|
Solve successful:
|
|
|
|
1
|
|
((((4*b*a*((16*b*((2*(z + o)) - b)) + a^2))^2) + (16*b*((16*b*((b*((16*b*((b*((a^2*((4*z) + (7*o))) + (16*b*o*(z - b + o)))) - (2*a^2*((z*((2*z) + (5*o))) + (3*o^2))))) - (a^4*((7*o) + (4*z))))) + (o*a^4*(z + o)))) + (a^6*o))))^-)*sign
|
|
2
|
|
(------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- + (2*b*a*((16*b*(b - (2*(z + o)))) - a^2)))
|
|
2
|
|
#5: f = ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
|
(4*b*((16*b*(b - z - o)) - a^2))
|
|
|
|
5-> simplify symbolic
|
|
|
|
1 a^2
|
|
((sign*(((b^2*(a^2 + (16*(o^2 + (o*z))))) + (o*((a^2*b) - (16*b^3))))^-)*((8*b^2) - ---)) - (8*b^2*a*(z + o)))
|
|
a 2 2
|
|
#5: f = - + --------------------------------------------------------------------------------------------------------------
|
|
2 ((16*(b^3 - (b^2*(z + o)))) - (b*a^2))
|
|
|
|
5-> 6
|
|
|
|
4*((f*((16*b^3) - (b*a^2))) + (16*b^2*z*(a - f)))*(a - f)
|
|
#6: o = -----------------------------------------------------------
|
|
((256*b^4) + (b^2*((128*a*f) - (96*a^2) - (64*f^2))) + a^4)
|
|
|
|
6-> derivative z
|
|
Differentiating the RHS with respect to z and simplifying...
|
|
|
|
64*((b*(a - f))^2)
|
|
#7: o' = -----------------------------------------------------------
|
|
((256*b^4) + (b^2*((128*a*f) - (96*a^2) - (64*f^2))) + a^4)
|
|
|
|
7-> f
|
|
Equation is a degree 2 polynomial equation in f.
|
|
Equation was solved with the quadratic formula.
|
|
Solve successful:
|
|
|
|
1
|
|
((((128*b^2*a*(1 + o'))^2) + (256*b^2*((o'*((32*b^2*((8*b^2*(1 + o')) - (a^2*(5 + (3*o'))))) + (a^4*(1 + o')))) - (64*((b*a)^2)))))^-)*sign0
|
|
2
|
|
-(-------------------------------------------------------------------------------------------------------------------------------------------- - (64*b^2*a*(1 + o')))
|
|
2
|
|
#7: f = ---------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
|
(64*b^2*(1 + o'))
|
|
|
|
7-> repeat simplify symbolic
|
|
|
|
o' 1 a^2
|
|
#7: f = a + (sign0*(--------^-)*(----- - (2*b)))
|
|
(1 + o') 2 (8*b)
|
|
|
|
Successfully finished reading script file "test2.in".
|
|
7-> read test6
|
|
7-> ; Combine the equations for conservation of momentum and kinetic energy
|
|
7-> ; to solve for the resulting velocity of two objects colliding head on.
|
|
7-> clear all
|
|
1-> ; equations for energy:
|
|
1-> e1=1/2*mass1*velocity1_old^2
|
|
|
|
mass1*velocity1_old^2
|
|
#1: e1 = ---------------------
|
|
2
|
|
|
|
1-> e2=1/2*mass2*velocity2_old^2
|
|
|
|
mass2*velocity2_old^2
|
|
#2: e2 = ---------------------
|
|
2
|
|
|
|
2-> e3=1/2*mass1*velocity1_new^2
|
|
|
|
mass1*velocity1_new^2
|
|
#3: e3 = ---------------------
|
|
2
|
|
|
|
3-> e4=1/2*mass2*velocity2_new^2
|
|
|
|
mass2*velocity2_new^2
|
|
#4: e4 = ---------------------
|
|
2
|
|
|
|
4-> e1+e2=e3+e4
|
|
|
|
#5: e1 + e2 = e3 + e4
|
|
|
|
5-> eliminate all
|
|
Eliminating variable e4 using solved equation #4...
|
|
Eliminating variable e3 using solved equation #3...
|
|
Eliminating variable e2 using solved equation #2...
|
|
Eliminating variable e1 using solved equation #1...
|
|
|
|
mass1*velocity1_old^2 mass2*velocity2_old^2 mass1*velocity1_new^2 mass2*velocity2_new^2
|
|
#5: --------------------- + --------------------- = --------------------- + ---------------------
|
|
2 2 2 2
|
|
|
|
5-> ; equations for momentum:
|
|
5-> #1: u1=mass1*velocity1_old
|
|
|
|
#1: u1 = mass1*velocity1_old
|
|
|
|
1-> #2: u2=mass2*velocity2_old
|
|
|
|
#2: u2 = mass2*velocity2_old
|
|
|
|
2-> #3: u3=mass1*velocity1_new
|
|
|
|
#3: u3 = mass1*velocity1_new
|
|
|
|
3-> #4: u4=mass2*velocity2_new
|
|
|
|
#4: u4 = mass2*velocity2_new
|
|
|
|
4-> u1+u2=u3+u4
|
|
|
|
#6: u1 + u2 = u3 + u4
|
|
|
|
6-> eliminate all
|
|
Eliminating variable u4 using solved equation #4...
|
|
Eliminating variable u3 using solved equation #3...
|
|
Eliminating variable u2 using solved equation #2...
|
|
Eliminating variable u1 using solved equation #1...
|
|
|
|
#6: (mass1*velocity1_old) + (mass2*velocity2_old) = (mass1*velocity1_new) + (mass2*velocity2_new)
|
|
|
|
6-> clear 1-4
|
|
6-> eliminate velocity1_new
|
|
Solving equation #5 for velocity1_new and substituting into the current equation...
|
|
|
|
mass2*(velocity2_old^2 - velocity2_new^2) 1
|
|
#6: (mass1*velocity1_old) + (mass2*velocity2_old) = (mass1*((----------------------------------------- + velocity1_old^2)^-)*sign) + (mass2*velocity2_new)
|
|
mass1 2
|
|
|
|
6-> velocity2_new
|
|
Equation is a degree 0.5 polynomial equation in velocity2_new.
|
|
Raising both equation sides to the power of 2 and expanding...
|
|
Equation is a degree 2 polynomial equation in velocity2_new.
|
|
Equation was solved with the quadratic formula.
|
|
Solve successful:
|
|
|
|
1
|
|
((((2*((mass1*velocity1_old) + (mass2*velocity2_old)))^2) + (4*velocity2_old*((mass1*((mass1*(velocity2_old - (2*velocity1_old))) - (2*mass2*velocity1_old))) - (mass2^2*velocity2_old))))^-)*sign0
|
|
2
|
|
(--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- + (mass1*velocity1_old) + (mass2*velocity2_old))
|
|
2
|
|
#6: velocity2_new = -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
|
(mass1 + mass2)
|
|
|
|
6-> simplify
|
|
|
|
1
|
|
(((((mass1*(velocity1_old - velocity2_old))^2)^-)*sign0) + (mass1*velocity1_old) + (mass2*velocity2_old))
|
|
2
|
|
#6: velocity2_new = ---------------------------------------------------------------------------------------------------------
|
|
(mass1 + mass2)
|
|
|
|
6-> velocity2_new = ((sign*((mass1*(velocity1_old-velocity2_old))^2)^.5)+(mass1*velocity1_old)+(mass2*velocity2_old))/(mass1+mass2)
|
|
|
|
1
|
|
((sign*(((mass1*(velocity1_old - velocity2_old))^2)^-)) + (mass1*velocity1_old) + (mass2*velocity2_old))
|
|
2
|
|
#7: velocity2_new = --------------------------------------------------------------------------------------------------------
|
|
(mass1 + mass2)
|
|
|
|
7-> compare 6
|
|
Comparing #6 with #7...
|
|
Equations are identical.
|
|
Successfully finished reading script file "test6.in".
|
|
7-> clear all
|
|
1-> read simplify
|
|
1->
|
|
1-> ; Some complete simplifications Mathomatic has always been able to do.
|
|
1-> ; The result is the smallest expression that gives exactly the same results.
|
|
1->
|
|
1-> 2*(x^2-y^2)^16-(x^2-y^2)^15*(2x^2-3)
|
|
|
|
#1: (2*((x^2 - y^2)^16)) - (((x^2 - y^2)^15)*((2*x^2) - 3))
|
|
|
|
1-> simplify ; Simplify the previously entered expression above.
|
|
|
|
#1: ((x^2 - y^2)^15)*(3 - (2*y^2))
|
|
|
|
1-> repeat echo *
|
|
*******************************************************************************
|
|
1-> a^3/((a-b)*(a-c))+b^3/((b-c)*(b-a))+c^3/((c-a)*(c-b))
|
|
|
|
a^3 b^3 c^3
|
|
#2: ----------------- + ----------------- + -----------------
|
|
((a - b)*(a - c)) ((b - c)*(b - a)) ((c - a)*(c - b))
|
|
|
|
2-> simplify ; Simplify algebraic fractions.
|
|
|
|
#2: a + b + c
|
|
|
|
2-> repeat echo *
|
|
*******************************************************************************
|
|
2-> (x^6+a^6)*(x+1)/((x^6+a^6)*(x^2-a^2)+a^2*x^2*(x^4-a^4))+a^2*x^2*(x+1)/(x^6-a^6-a^2*x^2*(x^2-a^2))
|
|
|
|
(x^6 + a^6)*(x + 1) a^2*x^2*(x + 1)
|
|
#3: --------------------------------------------------- + -----------------------------------
|
|
(((x^6 + a^6)*(x^2 - a^2)) + (a^2*x^2*(x^4 - a^4))) (x^6 - a^6 - (a^2*x^2*(x^2 - a^2)))
|
|
|
|
3-> simplify
|
|
|
|
(x + 1)
|
|
#3: -----------
|
|
(x^2 - a^2)
|
|
|
|
3-> repeat echo *
|
|
*******************************************************************************
|
|
3-> (1-(1-(y+1)/(x+y+1))/(1-x/(x+y+1)))/((y+1)^2-x/(1+x/(y-x+1))*(x*(y+1)/(y-x+1)-x))
|
|
|
|
(y + 1)
|
|
(1 - -----------)
|
|
(x + y + 1)
|
|
(1 - -----------------)
|
|
x
|
|
(1 - -----------)
|
|
(x + y + 1)
|
|
#4: -----------------------------------
|
|
x*(y + 1)
|
|
x*(----------- - x)
|
|
(y - x + 1)
|
|
(((y + 1)^2) - -------------------)
|
|
x
|
|
(1 + -----------)
|
|
(y - x + 1)
|
|
|
|
4-> simplify fraction ; Any complex fraction can be reduced to a simple fraction with this command.
|
|
|
|
1
|
|
#4: -------------------------------------
|
|
(1 + y^2 + (2*y) + (x*(y + 1)) + x^2)
|
|
|
|
4-> repeat echo *
|
|
*******************************************************************************
|
|
4-> ((2*((x*(x+(((x^2)-1)^(1/2))))-1))+1)/((2*x*((x^2)-1))+((((x^2)-1)^(1/2))*((2*(x^2))-1)))
|
|
|
|
1
|
|
((2*((x*(x + ((x^2 - 1)^-))) - 1)) + 1)
|
|
2
|
|
#5: -------------------------------------------------
|
|
1
|
|
((2*x*(x^2 - 1)) + (((x^2 - 1)^-)*((2*x^2) - 1)))
|
|
2
|
|
|
|
5-> simplify ; Simplify an expression containing radicals (roots).
|
|
|
|
1
|
|
#5: -------------
|
|
1
|
|
((x^2 - 1)^-)
|
|
2
|
|
|
|
5-> ; Rationalizing the denominator was required to simplify the above expression.
|
|
5-> repeat echo *
|
|
*******************************************************************************
|
|
5-> ((x - 2*y)^4/(x^2 - 4*y^2)^2 + 1)*(y + a)*(2*y + x) / (4*y^2 + x^2)
|
|
|
|
((x - (2*y))^4)
|
|
(------------------- + 1)*(y + a)*((2*y) + x)
|
|
((x^2 - (4*y^2))^2)
|
|
#6: ---------------------------------------------
|
|
((4*y^2) + x^2)
|
|
|
|
6-> repeat simplify
|
|
|
|
2*(y + a)
|
|
#6: -----------
|
|
((2*y) + x)
|
|
|
|
Successfully finished reading script file "simplify.in".
|
|
6-> read heron
|
|
6-> clear all
|
|
1-> ; This Mathomatic script shows two reverse derivations of Heron's formula.
|
|
1-> ; This is Heron's formula for the area of any triangle,
|
|
1-> ; given side lengths "a", "b", and "c".
|
|
1->
|
|
1-> 2s = a+b+c
|
|
|
|
#1: 2*s = a + b + c
|
|
|
|
1-> triangle_area = (s*(s-a)*(s-b)*(s-c))^.5
|
|
|
|
1
|
|
#2: triangle_area = (s*(s - a)*(s - b)*(s - c))^-
|
|
2
|
|
|
|
2-> eliminate s ; Heron's formula:
|
|
Solving equation #1 for s and substituting into the current equation...
|
|
|
|
(a + b + c) (a + b + c) (a + b + c)
|
|
(a + b + c)*(----------- - a)*(----------- - b)*(----------- - c)
|
|
2 2 2 1
|
|
#2: triangle_area = -----------------------------------------------------------------^-
|
|
2 2
|
|
|
|
2-> simplify ; Heron's formula simplified by Mathomatic:
|
|
|
|
1
|
|
(((2*((a^2*(b^2 + c^2)) + ((b*c)^2))) - a^4 - b^4 - c^4)^-)
|
|
2
|
|
#2: triangle_area = -----------------------------------------------------------
|
|
4
|
|
|
|
2-> pause
|
|
2-> ; This is how we arrive at Heron's formula for the area
|
|
2-> ; of any triangle, given side lengths a, b, and c, using the formula
|
|
2-> ; for the area of a trapezoid with side lengths a, b, c, and d,
|
|
2-> ; where a and c are the parallel sides (a is the longer parallel side).
|
|
2->
|
|
2-> ; A trapezoid is a quadrilateral with
|
|
2-> ; two sides that are parallel to each other.
|
|
2->
|
|
2-> ; Formula for the area of a trapezoid that is not a parallelogram:
|
|
2-> trapezoid_area=(a+c)/(4*(a-c))*((a+b-c+d)*(a-b-c+d)*(a+b-c-d)*(-a+b+c+d))^.5
|
|
|
|
1
|
|
(a + c)*(((a + b - c + d)*(a - b - c + d)*(a + b - c - d)*(b - a + c + d))^-)
|
|
2
|
|
#3: trapezoid_area = -----------------------------------------------------------------------------
|
|
(4*(a - c))
|
|
|
|
3-> pause
|
|
3-> copy
|
|
|
|
1
|
|
(a + c)*(((a + b - c + d)*(a - b - c + d)*(a + b - c - d)*(b - a + c + d))^-)
|
|
2
|
|
#4: trapezoid_area = -----------------------------------------------------------------------------
|
|
(4*(a - c))
|
|
|
|
3-> replace c with 0 ; make the shorter parallel side length = 0
|
|
|
|
1
|
|
(((a + b + d)*(a - b + d)*(a + b - d)*(b - a + d))^-)
|
|
2
|
|
#3: trapezoid_area = -----------------------------------------------------
|
|
4
|
|
|
|
3-> replace d with c ; Heron's formula in its simplest form:
|
|
|
|
1
|
|
(((a + b + c)*(a - b + c)*(a + b - c)*(b - a + c))^-)
|
|
2
|
|
#3: trapezoid_area = -----------------------------------------------------
|
|
4
|
|
|
|
3-> replace trapezoid_area with triangle_area
|
|
|
|
1
|
|
(((a + b + c)*(a - b + c)*(a + b - c)*(b - a + c))^-)
|
|
2
|
|
#3: triangle_area = -----------------------------------------------------
|
|
4
|
|
|
|
3-> pause Please press the Enter key to verify the result.
|
|
3-> copy
|
|
|
|
1
|
|
(((a + b + c)*(a - b + c)*(a + b - c)*(b - a + c))^-)
|
|
2
|
|
#5: triangle_area = -----------------------------------------------------
|
|
4
|
|
|
|
3-> display 2
|
|
|
|
1
|
|
(((2*((a^2*(b^2 + c^2)) + ((b*c)^2))) - a^4 - b^4 - c^4)^-)
|
|
2
|
|
#2: triangle_area = -----------------------------------------------------------
|
|
4
|
|
|
|
3-> compare 5 with 2 ; simplify and compare the result with Heron's formula:
|
|
Comparing #5 with #2...
|
|
Simplifying both equations...
|
|
Equations are identical.
|
|
3-> clear 5
|
|
3-> pause
|
|
3->
|
|
3-> ; This is how we arrive at Heron's formula for the area
|
|
3-> ; of any triangle, given side lengths a, b, and c, using
|
|
3-> ; Brahmagupta's formula for the area of a cyclic quadrilateral,
|
|
3-> ; making one side length equal zero, to make a cyclic triangle.
|
|
3-> ; Since all triangles are cyclic (can be circumscribed by a circle),
|
|
3-> ; this gives the area for any triangle.
|
|
3->
|
|
3-> 2s=a+b+c+d ; cyclic quadrilateral side lengths are a, b, c, and d
|
|
|
|
#5: 2*s = a + b + c + d
|
|
|
|
5-> cyclic_area = ((s-a)*(s-b)*(s-c)*(s-d))^.5
|
|
|
|
1
|
|
#6: cyclic_area = ((s - a)*(s - b)*(s - c)*(s - d))^-
|
|
2
|
|
|
|
6-> eliminate s ; Brahmagupta's formula:
|
|
Solving equation #5 for s and substituting into the current equation...
|
|
|
|
(a + b + c + d) (a + b + c + d) (a + b + c + d) (a + b + c + d) 1
|
|
#6: cyclic_area = ((--------------- - a)*(--------------- - b)*(--------------- - c)*(--------------- - d))^-
|
|
2 2 2 2 2
|
|
|
|
6-> pause
|
|
6-> copy
|
|
|
|
(a + b + c + d) (a + b + c + d) (a + b + c + d) (a + b + c + d) 1
|
|
#7: cyclic_area = ((--------------- - a)*(--------------- - b)*(--------------- - c)*(--------------- - d))^-
|
|
2 2 2 2 2
|
|
|
|
6-> replace d with 0 ; make one side length zero to get Heron's formula:
|
|
|
|
(a + b + c) (a + b + c) (a + b + c)
|
|
(----------- - a)*(----------- - b)*(----------- - c)*(a + b + c)
|
|
2 2 2 1
|
|
#6: cyclic_area = -----------------------------------------------------------------^-
|
|
2 2
|
|
|
|
6-> pause Please press the Enter key to verify the result.
|
|
6-> compare 2 ; simplify and compare the result with Heron's formula:
|
|
Comparing #2 with #6...
|
|
Simplifying both equations...
|
|
Variable triangle_area in the first equation
|
|
is equal to cyclic_area in the second equation.
|
|
6-> clear
|
|
6-> clear 1 5
|
|
Successfully finished reading script file "heron.in".
|
|
6-> clear all
|
|
1-> read radius
|
|
1->
|
|
1-> ; Some more fun formulas. These are very similar to Heron's formula
|
|
1-> ; for the area of a triangle (see "heron.in"). a, b, and c are the
|
|
1-> ; lengths of the sides of the triangle.
|
|
1->
|
|
1-> s=(a+b+c)/2 ; semiperimeter
|
|
|
|
(a + b + c)
|
|
#1: s = -----------
|
|
2
|
|
|
|
1-> ; radius of a circle inscribed in a triangle, called an incircle:
|
|
1-> inradius=(s*(s-a)*(s-b)*(s-c))^.5/s
|
|
|
|
1
|
|
((s*(s - a)*(s - b)*(s - c))^-)
|
|
2
|
|
#2: inradius = -------------------------------
|
|
s
|
|
|
|
2-> eliminate s
|
|
Eliminating variable s using solved equation #1...
|
|
|
|
(a + b + c) (a + b + c) (a + b + c)
|
|
(a + b + c)*(----------- - a)*(----------- - b)*(----------- - c)
|
|
2 2 2 1
|
|
2*(-----------------------------------------------------------------^-)
|
|
2 2
|
|
#2: inradius = -----------------------------------------------------------------------
|
|
(a + b + c)
|
|
|
|
2-> simplify
|
|
|
|
8*((b^2*c) + (b*c^2)) 1
|
|
(((2*((b*(a - (3*c))) + (a*c))) - a^2 + --------------------- - b^2 - c^2)^-)
|
|
(a + b + c) 2
|
|
#2: inradius = -----------------------------------------------------------------------------
|
|
2
|
|
|
|
2->
|
|
2-> ; The following is the equation for the radius of a circle circumscribing
|
|
2-> ; a triangle, called a circumcircle, which is a circle that passes through
|
|
2-> ; all the vertices of a polygon.
|
|
2-> radius=a*b*c/(4*(s*(s-a)*(s-b)*(s-c))^.5)
|
|
|
|
a*b*c
|
|
#3: radius = -----------------------------------
|
|
1
|
|
(4*((s*(s - a)*(s - b)*(s - c))^-))
|
|
2
|
|
|
|
3-> eliminate s
|
|
Eliminating variable s using solved equation #1...
|
|
|
|
a*b*c
|
|
#3: radius = -------------------------------------------------------------------------
|
|
(a + b + c) (a + b + c) (a + b + c)
|
|
(a + b + c)*(----------- - a)*(----------- - b)*(----------- - c)
|
|
2 2 2 1
|
|
(4*(-----------------------------------------------------------------^-))
|
|
2 2
|
|
|
|
3-> simplify
|
|
|
|
a*b*c
|
|
#3: radius = -----------------------------------------------------------
|
|
1
|
|
(((2*((a^2*(b^2 + c^2)) + ((b*c)^2))) - a^4 - b^4 - c^4)^-)
|
|
2
|
|
|
|
3-> #s ; Search backwards for the s variable; "/" searches forwards.
|
|
Searching backwards for variable.
|
|
|
|
(a + b + c)
|
|
#1: s = -----------
|
|
2
|
|
|
|
1-> clear ; No longer needed.
|
|
1-> display all
|
|
|
|
8*((b^2*c) + (b*c^2)) 1
|
|
(((2*((b*(a - (3*c))) + (a*c))) - a^2 + --------------------- - b^2 - c^2)^-)
|
|
(a + b + c) 2
|
|
#2: inradius = -----------------------------------------------------------------------------
|
|
2
|
|
|
|
|
|
a*b*c
|
|
#3: radius = -----------------------------------------------------------
|
|
1
|
|
(((2*((a^2*(b^2 + c^2)) + ((b*c)^2))) - a^4 - b^4 - c^4)^-)
|
|
2
|
|
|
|
Successfully finished reading script file "radius.in".
|
|
1-> clear all
|
|
1-> read pyth3d
|
|
1->
|
|
1-> ; This arrives at the distance between two points in 3D space from the
|
|
1-> ; Pythagorean theorem (distance between two points on a 2D plane).
|
|
1-> ; The coordinate of point 1, 2D: (x1, y1), 3D: (x1, y1, z1).
|
|
1-> ; The coordinate of point 2, 2D: (x2, y2), 3D: (x2, y2, z2).
|
|
1->
|
|
1-> distance2D^2=(x1-x2)^2+(y1-y2)^2 ; Distance formula for a 2D Cartesian plane.
|
|
|
|
#1: distance2D^2 = ((x1 - x2)^2) + ((y1 - y2)^2)
|
|
|
|
1-> distance3D^2=distance2D^2+(z1-z2)^2 ; Add another leg.
|
|
|
|
#2: distance3D^2 = distance2D^2 + ((z1 - z2)^2)
|
|
|
|
2-> eliminate distance2D ; Combine the two equations.
|
|
Solving equation #1 for distance2D and substituting into the current equation...
|
|
|
|
#2: distance3D^2 = ((x1 - x2)^2) + ((y1 - y2)^2) + ((z1 - z2)^2)
|
|
|
|
2-> distance3D ; Solve to get the distance in 3D Cartesian space.
|
|
Solve successful:
|
|
|
|
1
|
|
#2: distance3D = ((((x1 - x2)^2) + ((y1 - y2)^2) + ((z1 - z2)^2))^-)*sign0
|
|
2
|
|
|
|
Successfully finished reading script file "pyth3d.in".
|
|
2-> clear all
|
|
1-> read distance
|
|
1->
|
|
1-> ; This input arrives at the shortest distance between a point and a line
|
|
1-> ; in 2 dimensions. The point is at (x0, y0) in cartesian coordinates.
|
|
1-> ; (x, y) are the points on the line.
|
|
1->
|
|
1-> a*x+b*y+c=0 ; equation of the line
|
|
|
|
#1: (a*x) + (b*y) + c = 0
|
|
|
|
1-> y ; solve for y
|
|
Solve successful:
|
|
|
|
-((a*x) + c)
|
|
#1: y = ------------
|
|
b
|
|
|
|
1-> unfactor fraction ; equation of the line in slope-intercept form:
|
|
|
|
-c a*x
|
|
#1: y = -- - ---
|
|
b b
|
|
|
|
1-> distance=|a*(x-x0)+b*(y-y0)|/(a^2+b^2)^.5
|
|
|
|
1
|
|
((((a*(x - x0)) + (b*(y - y0)))^2)^-)
|
|
2
|
|
#2: distance = -------------------------------------
|
|
1
|
|
((a^2 + b^2)^-)
|
|
2
|
|
|
|
2-> eliminate y ; Combine the above two equations to eliminate x and y.
|
|
Eliminating variable y using solved equation #1...
|
|
|
|
-c a*x 1
|
|
((((a*(x - x0)) + (b*(-- - --- - y0)))^2)^-)
|
|
b b 2
|
|
#2: distance = --------------------------------------------
|
|
1
|
|
((a^2 + b^2)^-)
|
|
2
|
|
|
|
2-> simplify ; The beautiful answer is:
|
|
|
|
(((a*x0) + c + (b*y0))^2) 1
|
|
#2: distance = -------------------------^-
|
|
(a^2 + b^2) 2
|
|
|
|
2-> ; Replacing a with -m, b with 1, and c with -b results in the shortest distance from the line y=m*x+b.
|
|
Successfully finished reading script file "distance.in".
|
|
2-> clear all
|
|
1-> read circles
|
|
1->
|
|
1-> ; This is a simple example of eliminate command usage.
|
|
1-> ; Combine the equations for 2 circles of radius "r" on a 2D Cartesian plane
|
|
1-> ; to find the points of intersection (x, y).
|
|
1->
|
|
1-> (x-x1)^2+(y-y1)^2=r^2 ; circle of radius "r" with center at (x1, y1)
|
|
|
|
#1: ((x - x1)^2) + ((y - y1)^2) = r^2
|
|
|
|
1-> (x-x2)^2+(y-y2)^2=r^2 ; circle of radius "r" with center at (x2, y2)
|
|
|
|
#2: ((x - x2)^2) + ((y - y2)^2) = r^2
|
|
|
|
2-> eliminate x ; combine the two equations, removing the x variable from the result
|
|
Solving equation #1 for x and substituting into the current equation...
|
|
|
|
1
|
|
#2: (((((r^2 - ((y - y1)^2))^-)*sign) + x1 - x2)^2) + ((y - y2)^2) = r^2
|
|
2
|
|
|
|
2-> solve for y
|
|
Equation is a degree 0.5 polynomial equation in y.
|
|
Raising both equation sides to the power of 2 and expanding...
|
|
Equation is a degree 2 polynomial equation in y.
|
|
Equation was solved with the quadratic formula.
|
|
Solve successful:
|
|
|
|
1
|
|
((((4*((y1*((x2*((2*x1) - x2)) - x1^2 + (y1*(y2 - y1)) + y2^2)) + (y2*((x1*((2*x2) - x1)) - x2^2 - y2^2))))^2) + (16*((y2*((y2*((y1*((y1*((2*((x2*((2*x1) - x2)) - x1^2)) + (y2*(y2 - (4*y1))) + y1^2)) + (2*y2*((2*((x1*(x1 - (2*x2))) + x2^2)) + y2^2)))) + (x1*((x1*((3*((x1*((4*x2) - x1)) - y2^2 - (6*x2^2))) + (4*r^2))) + (2*x2*((6*x2^2) + (3*y2^2) - (4*r^2))))) + (x2^2*((4*r^2) - (3*(x2^2 + y2^2)))) - y2^4)) + (2*y1*((y1^2*((2*((x2*(x2 - (2*x1))) + x1^2)) + y1^2)) + (x1*((x1*((x1*(x1 - (4*x2))) + (6*x2^2) - (4*r^2))) + (4*x2*((2*r^2) - x2^2)))) + (x2^2*(x2^2 - (4*r^2))))))) + (y1^2*((y1^2*((3*((x2*((2*x1) - x2)) - x1^2)) - y1^2)) + (x1*((x1*((3*((x1*((4*x2) - x1)) - (6*x2^2))) + (4*r^2))) + (4*x2*((3*x2^2) - (2*r^2))))) + (x2^2*((4*r^2) - (3*x2^2))))) + (x2*((x2*((x1*((x1*((5*((x1*((4*x2) - (3*x1))) - (3*x2^2))) + (24*r^2))) + (2*x2*((3*x2^2) - (8*r^2))))) + (x2^2*((4*r^2) - x2^2)))) + (2*x1^3*((3*x1^2) - (8*r^2))))) + (x1^4*((4*r^2) - x1^2)))))^-)*sign0
|
|
2
|
|
(------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ + (2*((y1*((x2*(x2 - (2*x1))) + x1^2 + (y1*(y1 - y2)) - y2^2)) + (y2*((x1*(x1 - (2*x2))) + x2^2 + y2^2)))))
|
|
2
|
|
#2: y = -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
|
(4*((y2*(y2 - (2*y1))) + y1^2 + (x2*(x2 - (2*x1))) + x1^2))
|
|
|
|
2-> repeat simplify
|
|
|
|
4*r^2 1
|
|
(y2 + y1 + (((((x1 - x2)^2)*(----------------------------------------------------- - 1))^-)*sign0))
|
|
(y2^2 - (2*((y2*y1) + (x2*x1))) + x2^2 + y1^2 + x1^2) 2
|
|
#2: y = ---------------------------------------------------------------------------------------------------
|
|
2
|
|
|
|
Successfully finished reading script file "circles.in".
|
|
2-> clear all
|
|
1-> read ellipse
|
|
1->
|
|
1-> ; This is an equation for an ellipse that was created using the rule
|
|
1-> ; that the sum of the distances from any point on the perimeter (x, y)
|
|
1-> ; to the two foci: (x1, y1) and (x2, y2), is a constant k. This can
|
|
1-> ; represent any ellipse of any orientation on the Cartesian plane.
|
|
1->
|
|
1-> k = ((x1-x)^2+(y1-y)^2)^0.5 + ((x2-x)^2+(y2-y)^2)^0.5
|
|
|
|
1 1
|
|
#1: k = ((((x1 - x)^2) + ((y1 - y)^2))^-) + ((((x2 - x)^2) + ((y2 - y)^2))^-)
|
|
2 2
|
|
|
|
1->
|
|
1-> ; A simplified equation for a right ellipse centered at the origin (0, 0)
|
|
1-> ; of the Cartesian plane:
|
|
1->
|
|
1-> 1 = x^2/radius1^2 + y^2/radius2^2
|
|
|
|
x^2 y^2
|
|
#2: 1 = --------- + ---------
|
|
radius1^2 radius2^2
|
|
|
|
2-> ; The x-intercepts are radius1 and -radius1 because y=0 there.
|
|
2-> ; The y-intercepts are radius2 and -radius2 because x=0 there.
|
|
Successfully finished reading script file "ellipse.in".
|
|
2-> solve all y
|
|
Equation is a degree 0.5 polynomial equation in y.
|
|
Raising both equation sides to the power of 2 and expanding...
|
|
Equation is a degree 0.5 polynomial equation in y.
|
|
Raising both equation sides to the power of 2 and expanding...
|
|
Equation is a degree 2 polynomial equation in y.
|
|
Equation was solved with the quadratic formula.
|
|
Solve successful:
|
|
|
|
1
|
|
((((4*((2*x*(y1 - y2)*(x1 - x2)) + (y2*((y2*(y1 - y2)) - x2^2 + x1^2 + y1^2 + k^2)) + (y1*(x2^2 - x1^2 - y1^2 + k^2))))^2) + (64*((y1*((y1*((x2*((x2*((x*(x2 - x1 - x)) - (y1*y2))) - (x*(x1^2 + y1^2)))) + (x*((x1*((x1*(x1 - x)) + y1^2)) + (x*k^2))) + (x1^2*(k^2 + (y1*y2))) - (y1*y2*(y2^2 + k^2)))) + (y2*((x2^2*(y2^2 - x1^2 - k^2)) - (y2^2*(k^2 + x1^2)) - ((x1*k)^2))))) + (k^2*((x2*((x2*((x*(x + x1 - x2)) + y2^2)) + (x*(k^2 + x1^2)))) + (x*((x1*((x1*(x - x1)) + k^2)) + (x*(y2^2 - k^2)))))) + (y2^2*x*((x2*((x2*(x2 - x1 - x)) + y2^2 - x1^2)) + (x1*((x1*(x1 - x)) - y2^2)))))) + (32*((y1*((y1*((x2^2*(x1^2 + y1^2)) + (y1^2*((y1*y2) - x1^2)) + ((y2*k)^2))) + (y2*(x2^4 + y2^4 + x1^4 + k^4)))) - (k^2*((x2^2*(x1^2 + k^2)) + ((k*x1)^2))) + (y2^2*((x2^2*(x1^2 - y2^2)) + ((y2*x1)^2))))) + (16*((y1*((y1*((x2*((8*x*((x*x1) + (y1*y2))) - x2^3)) - (x1*((8*x*(k^2 + (y1*y2))) + x1^3)) + (y2^2*(y2^2 + y1^2)) + (y1^2*((3*k^2) - y1^2)) - (3*k^4))) + (8*y2*x*((x2*((x2*(x + x1 - x2)) + k^2 + (x1*(x1 - (2*x))) - y2^2)) + (x1*(y2^2 + (x1*(x - x1)) + k^2)) - (x*k^2))))) + (k^2*((x2*(x2^3 - (8*x*((x*x1) + y2^2)))) + (3*y2^2*(y2^2 - k^2)) + x1^4 + k^4)) + (y2^2*((x2*((8*x^2*x1) - x2^3)) - y2^4 - x1^4)))))^-)*sign
|
|
2
|
|
(-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- + (4*x*(y2 - y1)*(x1 - x2)) + (2*((y2*((y2*(y2 - y1)) + x2^2 - x1^2 - y1^2 - k^2)) + (y1*(x1^2 - x2^2 + y1^2 - k^2)))))
|
|
2
|
|
#1: y = ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
|
(4*((y1*(y1 - (2*y2))) - k^2 + y2^2))
|
|
|
|
Solve successful:
|
|
|
|
x 1
|
|
#2: y = ((-((-------^2) - 1))^-)*sign0*radius2
|
|
radius1 2
|
|
|
|
2-> simplify all
|
|
|
|
1
|
|
((((k^2*(x1^2 + (4*(x^2 - (x*x2))) + y1^2 + x2^2 + y2^2 + (2*((x1*(x2 - (2*x))) - (y1*y2))))) - k^4)*(y1^2 - (2*((y1*y2) + (x2*x1))) + y2^2 + x2^2 + x1^2 - k^2))^-)*sign
|
|
2 (x1 + x2)
|
|
(------------------------------------------------------------------------------------------------------------------------------------------------------------------------- + ((y1 - y2)*(x - ---------)*(x2 - x1)))
|
|
(y1 + y2) 2 2
|
|
#1: y = --------- + -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
|
2 (y1^2 - (2*y1*y2) - k^2 + y2^2)
|
|
|
|
|
|
x 1
|
|
#2: y = ((1 - (-------^2))^-)*sign0*radius2
|
|
radius1 2
|
|
|
|
2-> pause
|
|
2-> clear all
|
|
1-> help examples
|
|
*******************************************************************************
|
|
1-> ; Example 1:
|
|
1-> ; Here the derivative of the absolute value function is computed.
|
|
1-> ; Expressions are entered by just typing them in:
|
|
1-> |x| ; The absolute value of x
|
|
|
|
1
|
|
#1: (x^2)^-
|
|
2
|
|
|
|
1-> derivative ; The result gives the sign of x:
|
|
Differentiating with respect to x and simplifying...
|
|
|
|
x
|
|
#2: ---------
|
|
1
|
|
((x^2)^-)
|
|
2
|
|
|
|
2-> pause
|
|
2-> repeat echo -
|
|
-------------------------------------------------------------------------------
|
|
2-> ; Example 2:
|
|
2-> ; Here the calculate command is used to plug values into a solved formula.
|
|
2-> ; A common temperature conversion formula (from "help conversions"):
|
|
2-> fahrenheit = (9*celsius/5) + 32
|
|
|
|
9*celsius
|
|
#3: fahrenheit = --------- + 32
|
|
5
|
|
|
|
3-> repeat calculate ; plug in values until an empty line is entered
|
|
fahrenheit = (1.8*celsius) + 32, with fractions it is: (9*celsius/5) + 32
|
|
3->
|
|
3-> ; Solve for the other variable and simplify the result:
|
|
3-> solve for celsius
|
|
Solve successful:
|
|
|
|
-5*(32 - fahrenheit)
|
|
#3: celsius = --------------------
|
|
9
|
|
|
|
3-> simplify
|
|
|
|
5*(fahrenheit - 32)
|
|
#3: celsius = -------------------
|
|
9
|
|
|
|
3-> repeat calculate ; plug in values until an empty line is entered
|
|
celsius = (0.55555555555556*fahrenheit) - 17.777777777778, with fractions it is: (5*fahrenheit/9) - (160/9)
|
|
3->
|
|
3-> variables count; count all variables that occur in expressions
|
|
fahrenheit /* count = 1 */
|
|
celsius /* count = 1 */
|
|
3-> pause
|
|
3-> repeat echo -
|
|
-------------------------------------------------------------------------------
|
|
3-> ; Example 3:
|
|
3-> ; Expand the following to polynomial form, then refactor and differentiate:
|
|
3-> (x+y+z)^3
|
|
|
|
#4: (x + y + z)^3
|
|
|
|
4-> expand count ; Expand and count the resulting number of terms:
|
|
|
|
#4: x^3 + (3*x^2*y) + (3*x^2*z) + (3*x*y^2) + (6*x*y*z) + (3*x*z^2) + y^3 + (3*y^2*z) + (3*y*z^2) + z^3
|
|
|
|
#4: Expression consists of a total of 10 terms.
|
|
4-> pause
|
|
4-> simplify ; refactor:
|
|
|
|
#4: (x + y + z)^3
|
|
|
|
4-> derivative x ; here is the derivative, with respect to x:
|
|
Differentiating with respect to x and simplifying...
|
|
|
|
#5: 3*((x + y + z)^2)
|
|
|
|
5-> expand count ; and its term count, when expanded:
|
|
|
|
#5: (3*x^2) + (6*x*y) + (6*x*z) + (3*y^2) + (6*y*z) + (3*z^2)
|
|
|
|
#5: Expression consists of a total of 6 terms.
|
|
5-> clear all
|
|
1-> help conversions
|
|
*******************************************************************************
|
|
Help conversions:
|
|
-----------------
|
|
Commonly used metric/English conversions.
|
|
Select the equation you want (for example, with "1" or "/celsius")
|
|
and type the unit name you want, to solve for it (like "celsius").
|
|
Then type "repeat calculate" for units conversion and trying different values.
|
|
These values are correct for the US and UK.
|
|
-------------------------------------------
|
|
1-> ; Temperature
|
|
1-> fahrenheit = (9*celsius/5) + 32
|
|
|
|
9*celsius
|
|
#1: fahrenheit = --------- + 32
|
|
5
|
|
|
|
1-> kelvin = celsius + 273.15
|
|
|
|
5463
|
|
#2: kelvin = celsius + ----
|
|
20
|
|
|
|
2-> ; Distance
|
|
2-> inches = centimeters/2.54
|
|
|
|
50*centimeters
|
|
#3: inches = --------------
|
|
127
|
|
|
|
3-> miles = kilometers/1.609344
|
|
|
|
#4: miles = 0.62137119223733*kilometers
|
|
|
|
4-> ; Weight
|
|
4-> pounds = kilograms/0.45359237
|
|
|
|
#5: pounds = 2.2046226218488*kilograms
|
|
|
|
5-> simplify all
|
|
|
|
9*celsius
|
|
#1: fahrenheit = --------- + 32
|
|
5
|
|
|
|
|
|
5463
|
|
#2: kelvin = celsius + ----
|
|
20
|
|
|
|
|
|
50*centimeters
|
|
#3: inches = --------------
|
|
127
|
|
|
|
|
|
#4: miles = 0.62137119223733*kilometers
|
|
|
|
|
|
#5: pounds = 2.2046226218488*kilograms
|
|
|
|
5-> clear all
|
|
1-> help geometry
|
|
*******************************************************************************
|
|
Help geometry:
|
|
--------------
|
|
Commonly used standard (Euclidean) geometric formulas
|
|
-----------------------------------------------------
|
|
1-> ; Triangle area, "b" is the "base" side:
|
|
1-> triangle_area = b*height/2
|
|
|
|
b*height
|
|
#1: triangle_area = --------
|
|
2
|
|
|
|
1-> ; Here is Heron's formula for the area of any triangle
|
|
1-> ; given all three side lengths ("a", "b", and "c"):
|
|
1-> triangle_area = (((a + b + c)*(a - b + c)*(a + b - c)*(b - a + c))^(1/2))/4
|
|
|
|
1
|
|
(((a + b + c)*(a - b + c)*(a + b - c)*(b - a + c))^-)
|
|
2
|
|
#2: triangle_area = -----------------------------------------------------
|
|
4
|
|
|
|
2->
|
|
2-> ; Rectangle of length "l" and width "w":
|
|
2-> rectangle_area = l*w
|
|
|
|
#3: rectangle_area = l*w
|
|
|
|
3-> rectangle_perimeter = 2*l + 2*w
|
|
|
|
#4: rectangle_perimeter = (2*l) + (2*w)
|
|
|
|
4->
|
|
4-> ; Trapezoid of parallel sides "a" and "b",
|
|
4-> ; and the "distance" between them:
|
|
4-> trapezoid_area = distance*(a + b)/2
|
|
|
|
distance*(a + b)
|
|
#5: trapezoid_area = ----------------
|
|
2
|
|
|
|
5->
|
|
5-> ; Circle of radius "r":
|
|
5-> circle_area = pi*r^2
|
|
|
|
#6: circle_area = pi*r^2
|
|
|
|
6-> circle_perimeter = 2*pi*r
|
|
|
|
#7: circle_perimeter = 2*pi*r
|
|
|
|
7->
|
|
7-> ; 3D rectangular solid of length "l", width "w", and height "h":
|
|
7-> brick_volume = l*w*h
|
|
|
|
#8: brick_volume = l*w*h
|
|
|
|
8-> brick_surface_area = 2*l*w + 2*l*h + 2*w*h
|
|
|
|
#9: brick_surface_area = (2*l*w) + (2*l*h) + (2*w*h)
|
|
|
|
9->
|
|
9-> ; 3D sphere of radius "r":
|
|
9-> sphere_volume = 4/3*pi*r^3
|
|
|
|
4*pi*r^3
|
|
#10: sphere_volume = --------
|
|
3
|
|
|
|
10-> sphere_surface_area = 4*pi*r^2
|
|
|
|
#11: sphere_surface_area = 4*pi*r^2
|
|
|
|
11->
|
|
11-> ; Convex 2D polygon with straight sides,
|
|
11-> ; sum of all interior angles formula in degree, radian, and gradian units:
|
|
11-> sum_degrees = (sides - 2)*180
|
|
|
|
#12: sum_degrees = 180*(sides - 2)
|
|
|
|
12-> sum_radians = (sides - 2)*pi
|
|
|
|
#13: sum_radians = (sides - 2)*pi
|
|
|
|
13-> sum_grads = (sides - 2)*180*10/9 ; Rarely used gradian formula.
|
|
|
|
#14: sum_grads = 200*(sides - 2)
|
|
|
|
14-> ; "sides" is the number of sides of any convex 2D polygon.
|
|
14-> ; Convex means that all interior angles are less than 180 degrees.
|
|
14-> ; Type "elim sides" to get the radians/degrees/grads conversion formulas.
|
|
14-> simplify all
|
|
|
|
b*height
|
|
#1: triangle_area = --------
|
|
2
|
|
|
|
|
|
1
|
|
(((2*((b^2*(a^2 + c^2)) + ((a*c)^2))) - a^4 - b^4 - c^4)^-)
|
|
2
|
|
#2: triangle_area = -----------------------------------------------------------
|
|
4
|
|
|
|
|
|
#3: rectangle_area = l*w
|
|
|
|
|
|
#4: rectangle_perimeter = 2*(l + w)
|
|
|
|
|
|
distance*(a + b)
|
|
#5: trapezoid_area = ----------------
|
|
2
|
|
|
|
|
|
#6: circle_area = pi*r^2
|
|
|
|
|
|
#7: circle_perimeter = 2*pi*r
|
|
|
|
|
|
#8: brick_volume = l*w*h
|
|
|
|
|
|
#9: brick_surface_area = 2*((l*(w + h)) + (w*h))
|
|
|
|
|
|
4*pi*r^3
|
|
#10: sphere_volume = --------
|
|
3
|
|
|
|
|
|
#11: sphere_surface_area = 4*pi*r^2
|
|
|
|
|
|
#12: sum_degrees = 180*(sides - 2)
|
|
|
|
|
|
#13: sum_radians = pi*(sides - 2)
|
|
|
|
|
|
#14: sum_grads = 200*(sides - 2)
|
|
|
|
14-> quit
|
|
ByeBye!! from Mathomatic.
|