mirror of
https://github.com/mfillpot/mathomatic.git
synced 2026-01-08 04:29:39 +00:00
1427 lines
37 KiB
C
1427 lines
37 KiB
C
/*
|
|
* Mathomatic symbolic solve routines.
|
|
*
|
|
* Copyright (C) 1987-2012 George Gesslein II.
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
The chief copyright holder can be contacted at gesslein@mathomatic.org, or
|
|
George Gesslein II, P.O. Box 224, Lansing, NY 14882-0224 USA.
|
|
|
|
*/
|
|
|
|
#include "includes.h"
|
|
|
|
#define MAX_RAISE_POWER 20 /* Maximum number of times to increase power in solve function. */
|
|
|
|
static int increase(double d, long v);
|
|
static int poly_solve(long v);
|
|
static int g_of_f(int op, token_type *operandp, token_type *side1p, int *side1np, token_type *side2p, int *side2np);
|
|
static int flip(token_type *side1p, int *side1np, token_type *side2p, int *side2np);
|
|
|
|
static int repeat_count;
|
|
static int prev_n1, prev_n2;
|
|
|
|
static int last_int_var = 0;
|
|
|
|
/*
|
|
* Solve using equation spaces. Almost always displays a message.
|
|
*
|
|
* Return true if successful. If successful, you should display the solve result.
|
|
* You are allowed to simplify the result before display however,
|
|
* preferably with "simplify quick". Just plain "simplify" expands too much sometimes.
|
|
*/
|
|
int
|
|
solve_espace(want, have)
|
|
int want; /* equation number containing what to solve for */
|
|
int have; /* equation number to solve */
|
|
{
|
|
int i;
|
|
jmp_buf save_save;
|
|
int rv = 0; /* solve_sub() return value */
|
|
|
|
if (want == have || !equation_space_is_equation(have)) {
|
|
#if LIBRARY || !HELP
|
|
error(_("Solving requires an equation."));
|
|
#else
|
|
error(_("Please enter an equation to solve, or a command like \"help\"."));
|
|
#endif
|
|
printf(_("Solve failed for equation space #%d.\n"), have + 1);
|
|
return false;
|
|
}
|
|
blt(save_save, jmp_save, sizeof(jmp_save));
|
|
if ((i = setjmp(jmp_save)) != 0) { /* trap errors */
|
|
clean_up();
|
|
if (i == 14) {
|
|
error(_("Expression too large."));
|
|
}
|
|
rv = 0;
|
|
} else {
|
|
if (n_lhs[want]) {
|
|
if (n_rhs[want]) {
|
|
/* Something in the LHS and RHS of equation number "want". */
|
|
error(_("Can only solve for a single variable or for 0, possibly raised to a power."));
|
|
rv = 0;
|
|
} else {
|
|
/* Normal solve: */
|
|
rv = solve_sub(lhs[want], n_lhs[want], lhs[have], &n_lhs[have], rhs[have], &n_rhs[have]);
|
|
}
|
|
} else {
|
|
/* Solve variable was preceded by an equals sign, solve using reversed equation sides: */
|
|
rv = solve_sub(rhs[want], n_rhs[want], rhs[have], &n_rhs[have], lhs[have], &n_lhs[have]);
|
|
}
|
|
}
|
|
blt(jmp_save, save_save, sizeof(jmp_save));
|
|
if (rv <= 0) {
|
|
printf(_("Solve failed for equation space #%d.\n"), have + 1);
|
|
} else {
|
|
debug_string(0, _("Solve successful:"));
|
|
}
|
|
return(rv > 0);
|
|
}
|
|
|
|
/*
|
|
* Main Mathomatic symbolic solve routine.
|
|
*
|
|
* This works by moving everything containing the variable to solve for
|
|
* to the LHS (via transposition), then moving everything not containing the variable to the
|
|
* RHS. Many tricks are used, and this routine works very well.
|
|
*
|
|
* Globals tlhs[] and trhs[] are used to hold the actual equation while manipulating.
|
|
*
|
|
* Returns a positive integer if successful, with the result placed in the passed LHS and RHS.
|
|
* Returns 1 for normal success.
|
|
* Returns 2 if successful and a solution was zero and removed.
|
|
* Returns 0 on failure. Might succeed at a numeric solve.
|
|
* Returns -1 if solving for a variable and the equation is an identity.
|
|
* Returns -2 if unsolvable in all realms.
|
|
*/
|
|
int
|
|
solve_sub(wantp, wantn, leftp, leftnp, rightp, rightnp)
|
|
token_type *wantp; /* expression to solve for */
|
|
int wantn; /* length of expression to solve for */
|
|
token_type *leftp; /* LHS of equation */
|
|
int *leftnp; /* pointer to length of LHS */
|
|
token_type *rightp; /* RHS of equation */
|
|
int *rightnp; /* pointer to length of RHS */
|
|
{
|
|
int i, j;
|
|
int found, found_count;
|
|
int worked;
|
|
int diff_sign;
|
|
int op, op_kind;
|
|
token_type *p1, *b1, *ep;
|
|
long v = 0; /* variable to solve for */
|
|
int need_flip;
|
|
int uf_flag = false; /* unfactor flag */
|
|
int qtries = 0;
|
|
int zflag; /* true if RHS is currently zero */
|
|
int zsolve; /* true if we are solving for zero */
|
|
int inc_count = 0;
|
|
int zero_solved = false;
|
|
double numerator, denominator;
|
|
int success = 1;
|
|
|
|
repeat_count = 0;
|
|
prev_n1 = 0;
|
|
prev_n2 = 0;
|
|
if (*leftnp <= 0 || *rightnp <= 0) {
|
|
#if LIBRARY || !HELP
|
|
error(_("Solving requires an equation."));
|
|
#else
|
|
error(_("Please enter an equation to solve, or a command like \"help\"."));
|
|
#endif
|
|
return false;
|
|
}
|
|
if (wantn != 1) {
|
|
if (wantn == 3 && wantp[1].token.operatr == POWER
|
|
&& wantp[2].kind == CONSTANT && wantp[2].token.constant > 0.0 && wantp[2].token.constant != 1.0) {
|
|
/*
|
|
* Solving for 0^2 will isolate the square root and then square both sides of an equation;
|
|
* and solving for variable^2 will isolate the square root of that variable
|
|
* and then square both sides of the equation. Works for any power and variable.
|
|
*/
|
|
if (wantp[0].kind == VARIABLE) {
|
|
v = wantp[0].token.variable;
|
|
}
|
|
if (solve_sub(&zero_token, 1, rightp, rightnp, leftp, leftnp) <= 0)
|
|
return false;
|
|
n_tlhs = *leftnp;
|
|
blt(tlhs, leftp, n_tlhs * sizeof(*leftp));
|
|
n_trhs = *rightnp;
|
|
blt(trhs, rightp, n_trhs * sizeof(*rightp));
|
|
uf_simp(tlhs, &n_tlhs);
|
|
if (increase(1 / wantp[2].token.constant, v) != true) {
|
|
error(_("Unable to isolate root."));
|
|
return false;
|
|
}
|
|
list_tdebug(2);
|
|
mid_simp_side(tlhs, &n_tlhs);
|
|
simp_loop(trhs, &n_trhs);
|
|
uf_simp(trhs, &n_trhs);
|
|
list_tdebug(1);
|
|
|
|
blt(leftp, tlhs, n_tlhs * sizeof(*leftp));
|
|
*leftnp = n_tlhs;
|
|
blt(rightp, trhs, n_trhs * sizeof(*rightp));
|
|
*rightnp = n_trhs;
|
|
return true;
|
|
}
|
|
error(_("Can only solve for a single variable or for 0, possibly raised to a power."));
|
|
return false;
|
|
}
|
|
/* copy the equation to temporary storage where it will be manipulated */
|
|
n_tlhs = *leftnp;
|
|
blt(tlhs, leftp, n_tlhs * sizeof(*leftp));
|
|
n_trhs = *rightnp;
|
|
blt(trhs, rightp, n_trhs * sizeof(*rightp));
|
|
|
|
if (wantp->kind == VARIABLE) {
|
|
v = wantp->token.variable;
|
|
if (!found_var(trhs, n_trhs, v) && !found_var(tlhs, n_tlhs, v)) {
|
|
/* variable v is 0 or not found */
|
|
error(_("Solve variable not found."));
|
|
return false;
|
|
}
|
|
zsolve = false;
|
|
} else {
|
|
v = 0;
|
|
if (wantp->kind != CONSTANT || wantp->token.constant != 0.0) {
|
|
error(_("Can only solve for a single variable or for 0, possibly raised to a power."));
|
|
return false;
|
|
}
|
|
debug_string(1, _("Solving for zero..."));
|
|
zsolve = true;
|
|
}
|
|
uf_power(tlhs, &n_tlhs);
|
|
uf_power(trhs, &n_trhs);
|
|
simp_again:
|
|
/* Make sure equation is a bit simplified. */
|
|
list_tdebug(2);
|
|
simps_side(tlhs, &n_tlhs, zsolve);
|
|
if (uf_flag) {
|
|
simp_loop(trhs, &n_trhs);
|
|
uf_simp(trhs, &n_trhs);
|
|
factorv(trhs, &n_trhs, v);
|
|
} else {
|
|
simps_side(trhs, &n_trhs, zsolve);
|
|
}
|
|
list_tdebug(1);
|
|
no_simp:
|
|
/* First selectively move sub-expressions from the RHS to the LHS. */
|
|
op = 0;
|
|
ep = &trhs[n_trhs];
|
|
if (zsolve) {
|
|
for (b1 = p1 = trhs; p1 < ep; p1++) {
|
|
if (p1->level == 1 && p1->kind == OPERATOR) {
|
|
op = p1->token.operatr;
|
|
b1 = p1 + 1;
|
|
if (op == DIVIDE) {
|
|
if (!g_of_f(op, b1, trhs, &n_trhs, tlhs, &n_tlhs))
|
|
return false;
|
|
goto simp_again;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (b1 = p1 = trhs; p1 < ep; p1++) {
|
|
if (p1->kind == VARIABLE && v == p1->token.variable) {
|
|
if (op == 0) {
|
|
for (p1++;; p1++) {
|
|
if (p1 >= ep) {
|
|
op = PLUS;
|
|
break;
|
|
}
|
|
if (p1->level == 1 && p1->kind == OPERATOR) {
|
|
switch (p1->token.operatr) {
|
|
case TIMES:
|
|
case DIVIDE:
|
|
op = TIMES;
|
|
break;
|
|
case PLUS:
|
|
case MINUS:
|
|
op = PLUS;
|
|
break;
|
|
default:
|
|
op = p1->token.operatr;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
switch (op) {
|
|
case TIMES:
|
|
case DIVIDE:
|
|
case POWER:
|
|
b1 = trhs;
|
|
op = PLUS;
|
|
for (p1 = b1; p1 < ep; p1++)
|
|
p1->level++;
|
|
break;
|
|
}
|
|
if (!g_of_f(op, b1, trhs, &n_trhs, tlhs, &n_tlhs))
|
|
return false;
|
|
goto simp_again;
|
|
} else if (p1->level == 1 && p1->kind == OPERATOR) {
|
|
op = p1->token.operatr;
|
|
b1 = p1 + 1;
|
|
}
|
|
}
|
|
}
|
|
if (uf_flag) {
|
|
simps_side(trhs, &n_trhs, zsolve);
|
|
}
|
|
left_again:
|
|
worked = true;
|
|
uf_flag = false;
|
|
see_work:
|
|
if (found_var(trhs, n_trhs, v)) {
|
|
/* solve variable in RHS */
|
|
debug_string(1, _("Solve variable moved back to RHS, quitting solve routine."));
|
|
return false;
|
|
}
|
|
/* See if we have solved the equation. */
|
|
if (se_compare(wantp, wantn, tlhs, n_tlhs, &diff_sign) && !diff_sign) {
|
|
if (zsolve) {
|
|
debug_string(1, "Simplifying the zero solve until there are no more divides:");
|
|
zero_simp:
|
|
list_tdebug(2);
|
|
uf_power(trhs, &n_trhs);
|
|
do {
|
|
do {
|
|
simp_ssub(trhs, &n_trhs, 0L, 0.0, false, true, 4);
|
|
} while (uf_power(trhs, &n_trhs));
|
|
} while (super_factor(trhs, &n_trhs, 1));
|
|
list_tdebug(1);
|
|
ep = &trhs[n_trhs];
|
|
op = 0;
|
|
for (p1 = trhs + 1; p1 < ep; p1 += 2) {
|
|
if (p1->level == 1) {
|
|
op = p1->token.operatr;
|
|
if (op == DIVIDE) {
|
|
goto no_simp;
|
|
}
|
|
if (op != TIMES) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
switch (op) {
|
|
case TIMES:
|
|
for (p1 = trhs; p1 < ep;) {
|
|
b1 = p1;
|
|
for (;; p1++) {
|
|
if (p1 >= ep || (p1->kind == OPERATOR && p1->level == 1)) {
|
|
blt(b1 + 1, p1, (char *) ep - (char *) p1);
|
|
n_trhs -= p1 - (b1 + 1);
|
|
*b1 = one_token;
|
|
goto zero_simp;
|
|
}
|
|
if (p1->kind != CONSTANT && p1->kind != OPERATOR
|
|
&& (p1->kind != VARIABLE || (p1->token.variable & VAR_MASK) > SIGN)) {
|
|
break;
|
|
}
|
|
}
|
|
p1 = b1;
|
|
for (p1++; p1 < ep && p1->level > 1; p1 += 2)
|
|
;
|
|
#if DEBUG
|
|
if (p1 != ep && (p1->kind != OPERATOR || p1->token.operatr != TIMES)) {
|
|
error_bug("Operator mix up in zero_simp.");
|
|
}
|
|
#endif
|
|
if ((p1 - 2) > b1) {
|
|
p1 -= 2;
|
|
if (p1->token.operatr == POWER && p1->level == 2
|
|
/* && ((p1 - 2) <= b1 || (p1 - 2)->token.operatr != POWER || (p1 - 2)->level != 3) */) {
|
|
p1++;
|
|
if (p1->level == 2 && p1->kind == CONSTANT && p1->token.constant > 0.0) {
|
|
p1->token.constant = 1.0;
|
|
goto zero_simp;
|
|
}
|
|
p1++;
|
|
} else
|
|
p1 += 2;
|
|
}
|
|
p1++;
|
|
}
|
|
break;
|
|
case POWER:
|
|
/* if ((p1 - 2) <= trhs || (p1 - 2)->token.operatr != POWER || (p1 - 2)->level != 2) { */
|
|
p1++;
|
|
if (p1->level == 1 && p1->kind == CONSTANT && p1->token.constant > 0.0) {
|
|
n_trhs -= 2;
|
|
goto zero_simp;
|
|
}
|
|
/* } */
|
|
break;
|
|
}
|
|
debug_string(1, _("Solve for zero completed:"));
|
|
} else {
|
|
debug_string(1, _("Solve completed:"));
|
|
}
|
|
list_tdebug(1);
|
|
blt(leftp, tlhs, n_tlhs * sizeof(*leftp));
|
|
*leftnp = n_tlhs;
|
|
blt(rightp, trhs, n_trhs * sizeof(*rightp));
|
|
*rightnp = n_trhs;
|
|
return success;
|
|
}
|
|
/* Move what we don't want in the LHS to the RHS. */
|
|
found_count = 0;
|
|
need_flip = 0;
|
|
found = 0;
|
|
op = 0;
|
|
ep = &tlhs[n_tlhs];
|
|
for (b1 = p1 = tlhs;; p1++) {
|
|
if (p1 >= ep || (p1->level == 1 && p1->kind == OPERATOR)) {
|
|
if (!found) {
|
|
if ((p1 < ep || found_count || zsolve || n_tlhs > 1 || tlhs[0].kind != CONSTANT)
|
|
&& (p1 - b1 != 1 || b1->kind != CONSTANT || b1->token.constant != 1.0
|
|
|| p1 >= ep || p1->token.operatr != DIVIDE)) {
|
|
if (op == 0) {
|
|
for (;; p1++) {
|
|
if (p1 >= ep) {
|
|
op = PLUS;
|
|
break;
|
|
}
|
|
if (p1->level == 1 && p1->kind == OPERATOR) {
|
|
switch (p1->token.operatr) {
|
|
case TIMES:
|
|
case DIVIDE:
|
|
op = TIMES;
|
|
break;
|
|
case PLUS:
|
|
case MINUS:
|
|
op = PLUS;
|
|
break;
|
|
default:
|
|
op = p1->token.operatr;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (zsolve) {
|
|
if (p1 < ep) {
|
|
switch (op) {
|
|
case PLUS:
|
|
case MINUS:
|
|
case DIVIDE:
|
|
break;
|
|
default:
|
|
goto fin1;
|
|
}
|
|
} else {
|
|
if (op != DIVIDE) {
|
|
b1 = tlhs;
|
|
op = PLUS;
|
|
for (p1 = b1; p1 < ep; p1++)
|
|
p1->level++;
|
|
}
|
|
}
|
|
}
|
|
if (!g_of_f(op, b1, tlhs, &n_tlhs, trhs, &n_trhs))
|
|
return false;
|
|
list_tdebug(2);
|
|
if (uf_flag) {
|
|
simp_loop(tlhs, &n_tlhs);
|
|
} else {
|
|
simps_side(tlhs, &n_tlhs, zsolve);
|
|
}
|
|
simps_side(trhs, &n_trhs, zsolve);
|
|
list_tdebug(1);
|
|
goto see_work;
|
|
}
|
|
} else if (op == DIVIDE) {
|
|
need_flip += found;
|
|
}
|
|
if (p1 >= ep) {
|
|
if (found_count == 0) { /* if solve variable no longer in LHS */
|
|
if (found_var(trhs, n_trhs, v)) {
|
|
/* solve variable in RHS */
|
|
debug_string(1, _("Solve variable moved back to RHS, quitting solve routine."));
|
|
return false;
|
|
}
|
|
/* The following code determines if we have an identity: */
|
|
calc_simp(tlhs, &n_tlhs);
|
|
calc_simp(trhs, &n_trhs);
|
|
if (se_compare(tlhs, n_tlhs, trhs, n_trhs, &diff_sign) && !diff_sign) {
|
|
error(_("This equation is an identity."));
|
|
debug_string(0, _("That is, the LHS is identical to the RHS."));
|
|
return -1;
|
|
}
|
|
found = false;
|
|
for (i = 0; i < n_tlhs; i += 2) {
|
|
if (tlhs[i].kind == VARIABLE && tlhs[i].token.variable > IMAGINARY) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
for (i = 0; i < n_trhs; i += 2) {
|
|
if (trhs[i].kind == VARIABLE && trhs[i].token.variable > IMAGINARY) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (found) {
|
|
error(_("This equation is independent of the solve variable."));
|
|
} else {
|
|
error(_("There are no possible values for the solve variable."));
|
|
}
|
|
return -2;
|
|
}
|
|
zflag = (n_trhs == 1 && trhs[0].kind == CONSTANT && trhs[0].token.constant == 0.0);
|
|
if (zflag) {
|
|
/* overwrite -0.0 */
|
|
trhs[0].token.constant = 0.0;
|
|
}
|
|
if (need_flip >= found_count) {
|
|
if (!flip(tlhs, &n_tlhs, trhs, &n_trhs))
|
|
return false;
|
|
list_tdebug(2);
|
|
simps_side(tlhs, &n_tlhs, zsolve);
|
|
simps_side(trhs, &n_trhs, zsolve);
|
|
list_tdebug(1);
|
|
goto left_again;
|
|
}
|
|
if (worked && !uf_flag) {
|
|
worked = false;
|
|
debug_string(1, _("Unfactoring..."));
|
|
partial_flag = false;
|
|
uf_simp(tlhs, &n_tlhs);
|
|
partial_flag = true;
|
|
factorv(tlhs, &n_tlhs, v);
|
|
list_tdebug(1);
|
|
uf_flag = true;
|
|
goto see_work;
|
|
}
|
|
if (uf_flag) {
|
|
simps_side(tlhs, &n_tlhs, zsolve);
|
|
uf_flag = false;
|
|
goto see_work;
|
|
}
|
|
op = 0;
|
|
b1 = tlhs;
|
|
for (i = 1; i < n_tlhs; i += 2) {
|
|
if (tlhs[i].level == 1) {
|
|
op_kind = tlhs[i].token.operatr;
|
|
if (op_kind == TIMES || op_kind == DIVIDE) {
|
|
if (op == 0) {
|
|
op = TIMES;
|
|
}
|
|
} else {
|
|
op = op_kind;
|
|
break;
|
|
}
|
|
if (zflag) {
|
|
if (op_kind == DIVIDE
|
|
|| (tlhs[i+1].kind == VARIABLE && tlhs[i+1].token.variable == v
|
|
&& (tlhs[i+1].level == 1
|
|
|| (tlhs[i+1].level == 2 && tlhs[i+2].token.operatr == POWER
|
|
&& tlhs[i+3].level == 2 && tlhs[i+3].kind == CONSTANT && tlhs[i+3].token.constant > 0.0)))) {
|
|
op = op_kind;
|
|
b1 = &tlhs[i+1];
|
|
if (op_kind == DIVIDE)
|
|
break;
|
|
}
|
|
} else {
|
|
if (op_kind == DIVIDE) {
|
|
for (j = i + 2; j < n_tlhs && tlhs[j].level > 1; j += 2) {
|
|
if (tlhs[j].level == 2) {
|
|
op_kind = tlhs[j].token.operatr;
|
|
if (op_kind == PLUS || op_kind == MINUS) {
|
|
op = DIVIDE;
|
|
b1 = &tlhs[i+1];
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if ((zflag && zero_solved && op == TIMES
|
|
&& b1[0].kind == VARIABLE && b1[0].token.variable == v
|
|
&& (b1[0].level == 1 || (b1[0].level == 2 && b1[1].token.operatr == POWER
|
|
&& b1[2].level == 2 && b1[2].kind == CONSTANT && b1[2].token.constant > 0.0)))
|
|
|| op == DIVIDE) {
|
|
if (op == TIMES) {
|
|
qtries = 0; /* might be quadratic after removing solution */
|
|
success = 2;
|
|
#if !SILENT
|
|
fprintf(gfp, _("Removing possible solution: \""));
|
|
list_proc(b1, 1, false);
|
|
fprintf(gfp, " = 0\".\n");
|
|
#endif
|
|
} else {
|
|
debug_string(1, _("Juggling..."));
|
|
uf_flag = true;
|
|
}
|
|
if (!g_of_f(op, b1, tlhs, &n_tlhs, trhs, &n_trhs))
|
|
return false;
|
|
goto simp_again;
|
|
}
|
|
b1 = NULL;
|
|
for (i = 1; i < n_tlhs; i += 2) {
|
|
if (tlhs[i].token.operatr == POWER
|
|
&& tlhs[i+1].level == tlhs[i].level
|
|
&& tlhs[i+1].kind == CONSTANT
|
|
&& fabs(tlhs[i+1].token.constant) < 1.0) {
|
|
if (!f_to_fraction(tlhs[i+1].token.constant, &numerator, &denominator)
|
|
|| fabs(numerator) != 1.0 || denominator < 2.0) {
|
|
continue;
|
|
}
|
|
for (j = i - 1; j >= 0 && tlhs[j].level >= tlhs[i].level; j--) {
|
|
if (tlhs[j].kind == VARIABLE && tlhs[j].token.variable == v) {
|
|
if (b1) {
|
|
if (fabs(b1->token.constant) < fabs(tlhs[i+1].token.constant)) {
|
|
b1 = &tlhs[i+1];
|
|
}
|
|
} else {
|
|
b1 = &tlhs[i+1];
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (b1 && zero_solved) {
|
|
inc_count++;
|
|
if (inc_count > MAX_RAISE_POWER)
|
|
return false;
|
|
zero_solved = false;
|
|
qtries = 0;
|
|
if (!increase(b1->token.constant, v)) {
|
|
return false;
|
|
}
|
|
uf_flag = true;
|
|
goto simp_again;
|
|
}
|
|
if (qtries) {
|
|
return false;
|
|
}
|
|
*leftnp = n_tlhs;
|
|
blt(leftp, tlhs, n_tlhs * sizeof(*leftp));
|
|
*rightnp = n_trhs;
|
|
blt(rightp, trhs, n_trhs * sizeof(*rightp));
|
|
if (solve_sub(&zero_token, 1, leftp, leftnp, rightp, rightnp) <= 0)
|
|
return false;
|
|
if (zero_solved) {
|
|
qtries++;
|
|
}
|
|
zero_solved = true;
|
|
if (poly_solve(v)) {
|
|
goto left_again;
|
|
} else {
|
|
goto simp_again;
|
|
}
|
|
} else {
|
|
fin1:
|
|
found = 0;
|
|
op = p1->token.operatr;
|
|
b1 = p1 + 1;
|
|
}
|
|
} else if (p1->kind == VARIABLE) {
|
|
if (v == p1->token.variable) {
|
|
found_count++;
|
|
found++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Isolate (solve for) the expression containing variable "v" raised to the power of "d",
|
|
* then raise both sides of the equation to the power of 1/d.
|
|
*
|
|
* Return true if successful.
|
|
*/
|
|
static int
|
|
increase(d, v)
|
|
double d;
|
|
long v;
|
|
{
|
|
int flag, foundp, found2;
|
|
int len1, len2;
|
|
int op;
|
|
token_type *b1, *p1, *p2;
|
|
token_type *ep;
|
|
|
|
#if !SILENT
|
|
if (debug_level >= 0) {
|
|
fprintf(gfp, _("Raising both equation sides to the power of %.*g and expanding...\n"), precision, 1.0 / d);
|
|
}
|
|
#endif
|
|
list_tdebug(2);
|
|
partial_flag = false;
|
|
ufactor(tlhs, &n_tlhs);
|
|
partial_flag = true;
|
|
/* symb_flag = symblify; */
|
|
simp_ssub(tlhs, &n_tlhs, v, d, true, false, 2);
|
|
simp_ssub(tlhs, &n_tlhs, 0L, 1.0, true, true, 2);
|
|
/* symb_flag = false; */
|
|
list_tdebug(1);
|
|
|
|
isolate:
|
|
ep = &tlhs[n_tlhs];
|
|
len2 = len1 = 0;
|
|
foundp = false;
|
|
for (p1 = tlhs + 1;; p1 += 2) {
|
|
if (p1 >= ep) {
|
|
return 2; /* power not found */
|
|
}
|
|
if (p1->level == 1) {
|
|
break;
|
|
}
|
|
if (p1->token.operatr == POWER
|
|
&& (p1 + 1)->level == p1->level
|
|
&& (p1 + 1)->kind == CONSTANT
|
|
&& (p1 + 1)->token.constant == d) {
|
|
flag = false;
|
|
for (b1 = p1 - 1;; b1--) {
|
|
if (b1->level < p1->level) {
|
|
b1++;
|
|
break;
|
|
}
|
|
if (b1->kind == VARIABLE && b1->token.variable == v) {
|
|
flag = true;
|
|
}
|
|
if (b1 == tlhs)
|
|
break;
|
|
}
|
|
if (flag || v == 0) {
|
|
foundp = true;
|
|
len1 = max(len1, p1 - b1);
|
|
}
|
|
}
|
|
}
|
|
found2 = false;
|
|
for (p2 = p1 + 2;; p2 += 2) {
|
|
if (p2 >= ep) {
|
|
break;
|
|
}
|
|
if (p2->token.operatr == POWER
|
|
&& (p2 + 1)->level == p2->level
|
|
&& (p2 + 1)->kind == CONSTANT
|
|
&& (p2 + 1)->token.constant == d) {
|
|
flag = false;
|
|
for (b1 = p2 - 1;; b1--) {
|
|
if (b1->level < p2->level) {
|
|
b1++;
|
|
break;
|
|
}
|
|
if (b1->kind == VARIABLE && b1->token.variable == v) {
|
|
flag = true;
|
|
}
|
|
if (b1 == tlhs)
|
|
break;
|
|
}
|
|
if (flag || v == 0) {
|
|
found2 = true;
|
|
len2 = max(len2, p2 - b1);
|
|
}
|
|
}
|
|
}
|
|
if (foundp && found2) {
|
|
if (len2 > len1)
|
|
foundp = false;
|
|
}
|
|
b1 = p1 + 1;
|
|
op = p1->token.operatr;
|
|
if (op == POWER && b1->level == 1 && b1->kind == CONSTANT && b1->token.constant == d) {
|
|
return(g_of_f(POWER, b1, tlhs, &n_tlhs, trhs, &n_trhs));
|
|
}
|
|
if (!foundp) {
|
|
b1 = tlhs;
|
|
if (p1 - b1 == 1 && p1->token.operatr == DIVIDE
|
|
&& b1->kind == CONSTANT && b1->token.constant == 1.0) {
|
|
if (!flip(tlhs, &n_tlhs, trhs, &n_trhs))
|
|
return false;
|
|
goto end;
|
|
}
|
|
switch (p1->token.operatr) {
|
|
case TIMES:
|
|
case DIVIDE:
|
|
op = TIMES;
|
|
break;
|
|
case PLUS:
|
|
case MINUS:
|
|
op = PLUS;
|
|
break;
|
|
default:
|
|
op = p1->token.operatr;
|
|
break;
|
|
}
|
|
}
|
|
if (!g_of_f(op, b1, tlhs, &n_tlhs, trhs, &n_trhs))
|
|
return false;
|
|
end:
|
|
list_tdebug(2);
|
|
simp_loop(tlhs, &n_tlhs);
|
|
simp_loop(trhs, &n_trhs);
|
|
list_tdebug(1);
|
|
goto isolate;
|
|
}
|
|
|
|
/*
|
|
* Quadratic and biquadratic solve routine.
|
|
* Solves any equation of the form "0 = ax^(2n)+bx^n+c" for "x^n",
|
|
* where "x" is an expression containing the solve variable,
|
|
* and "n" is a constant. Uses the quadratic formula.
|
|
*
|
|
* The equation to solve is in tlhs and trhs, it must already be solved for zero.
|
|
*
|
|
* Return true if successful, with solved equation in tlhs and trhs.
|
|
*/
|
|
static int
|
|
poly_solve(v)
|
|
long v; /* solve variable */
|
|
{
|
|
int i, j, k;
|
|
token_type *p1, *p2, *ep;
|
|
token_type *x1p = NULL, *x2p;
|
|
token_type *a1p = NULL, *a2p = NULL, *a2ep = NULL;
|
|
token_type *b1p, *b2p, *b2ep;
|
|
token_type *x1tp, *a1tp;
|
|
token_type x1_storage[100];
|
|
int op, op2, opx1, opx2;
|
|
int found, diff_sign;
|
|
int len, alen, blen, aloc, nx1;
|
|
double high_power = 0.0;
|
|
|
|
debug_string(1, _("Checking if equation is a polynomial equation:"));
|
|
#if DEBUG
|
|
if (n_tlhs != 1 || tlhs[0].kind != CONSTANT || tlhs[0].token.constant != 0.0) {
|
|
error_bug("poly_solve() called without a zero-solved equation!");
|
|
}
|
|
#endif
|
|
uf_simp(trhs, &n_trhs);
|
|
while (factor_plus(trhs, &n_trhs, v, 0.0)) {
|
|
simp_loop(trhs, &n_trhs);
|
|
}
|
|
list_tdebug(1);
|
|
|
|
found = false;
|
|
op = 0;
|
|
ep = &trhs[n_trhs];
|
|
for (x1tp = p1 = trhs;; p1++) {
|
|
if (p1 >= ep || (p1->level == 1 && p1->kind == OPERATOR)) {
|
|
if (p1 < ep) {
|
|
switch (p1->token.operatr) {
|
|
case PLUS:
|
|
case MINUS:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
if (op == TIMES || op == DIVIDE) {
|
|
found = false;
|
|
op2 = 0;
|
|
for (a1tp = p2 = x1tp;; p2++) {
|
|
if (p2 >= p1)
|
|
break;
|
|
if (p2->level == 2) {
|
|
if (p2->kind == OPERATOR) {
|
|
x1tp = p2 + 1;
|
|
op2 = p2->token.operatr;
|
|
found = false;
|
|
}
|
|
} else {
|
|
if (p2->kind == OPERATOR) {
|
|
if (p2->level == 3 && p2->token.operatr == POWER) {
|
|
if (found && (op2 == TIMES || op2 == 0)
|
|
&& (p2 + 1)->level == 3
|
|
&& (p2 + 1)->kind == CONSTANT
|
|
&& (p2 + 1)->token.constant > high_power) {
|
|
high_power = (p2 + 1)->token.constant;
|
|
x1p = x1tp;
|
|
a1p = a1tp;
|
|
a2p = p2 + 2;
|
|
a2ep = p1;
|
|
}
|
|
}
|
|
} else if (p2->kind == VARIABLE && p2->token.variable == v) {
|
|
found = true;
|
|
}
|
|
}
|
|
}
|
|
} else if (op == POWER && found && (p1 - 1)->level == 2
|
|
&& (p1 - 1)->kind == CONSTANT && (p1 - 1)->token.constant > high_power) {
|
|
high_power = (p1 - 1)->token.constant;
|
|
a1p = x1p = x1tp;
|
|
a2p = p1;
|
|
a2ep = a2p;
|
|
}
|
|
if (p1 >= ep) {
|
|
break;
|
|
}
|
|
}
|
|
if (p1->level == 1) {
|
|
if (p1->kind == OPERATOR) {
|
|
op = 0;
|
|
x1tp = p1 + 1;
|
|
found = false;
|
|
}
|
|
} else {
|
|
if (p1->kind == OPERATOR) {
|
|
if (p1->level == 2) {
|
|
op = p1->token.operatr;
|
|
}
|
|
} else if (op == 0 && p1->kind == VARIABLE && p1->token.variable == v) {
|
|
found = true;
|
|
}
|
|
}
|
|
}
|
|
if (high_power == 0.0)
|
|
return false;
|
|
#if !SILENT
|
|
if (debug_level >= 0) {
|
|
list_var(v, 0);
|
|
fprintf(gfp, _("Equation is a degree %.*g polynomial equation in %s.\n"), precision, high_power, var_str);
|
|
}
|
|
#endif
|
|
if (a1p > trhs && (a1p - 1)->token.operatr == MINUS)
|
|
opx1 = MINUS;
|
|
else
|
|
opx1 = PLUS;
|
|
if (high_power == 2.0) {
|
|
nx1 = (a2p - x1p) - 2;
|
|
if (nx1 > ARR_CNT(x1_storage))
|
|
return false;
|
|
blt(x1_storage, x1p, nx1 * sizeof(token_type));
|
|
} else {
|
|
nx1 = (a2p - x1p);
|
|
if (nx1 > ARR_CNT(x1_storage))
|
|
return false;
|
|
blt(x1_storage, x1p, nx1 * sizeof(token_type));
|
|
x1_storage[nx1-1].token.constant /= 2.0;
|
|
}
|
|
opx2 = 0;
|
|
op = 0;
|
|
for (x2p = p1 = trhs;; p1++) {
|
|
if (p1 >= ep || (p1->level == 1 && p1->kind == OPERATOR)) {
|
|
if (se_compare(x1_storage, nx1, x2p, p1 - x2p, &diff_sign)) {
|
|
b1p = x2p;
|
|
b2p = p1;
|
|
b2ep = b2p;
|
|
break;
|
|
}
|
|
if (op == TIMES || op == DIVIDE) {
|
|
op2 = 0;
|
|
for (b1p = p2 = x2p;; p2++) {
|
|
if (p2 >= p1 || (p2->level == 2 && p2->kind == OPERATOR)) {
|
|
if (op2 == 0 || op2 == TIMES) {
|
|
if (se_compare(x1_storage, nx1, x2p, p2 - x2p, &diff_sign)) {
|
|
b2p = p2;
|
|
b2ep = p1;
|
|
goto big_bbreak;
|
|
}
|
|
}
|
|
if (p2 >= p1)
|
|
break;
|
|
}
|
|
if (p2->level == 2 && p2->kind == OPERATOR) {
|
|
x2p = p2 + 1;
|
|
op2 = p2->token.operatr;
|
|
}
|
|
}
|
|
}
|
|
if (p1 >= ep)
|
|
return false;
|
|
}
|
|
if (p1->level == 1) {
|
|
if (p1->kind == OPERATOR) {
|
|
op = 0;
|
|
opx2 = p1->token.operatr;
|
|
x2p = p1 + 1;
|
|
}
|
|
} else {
|
|
if (p1->kind == OPERATOR && p1->level == 2) {
|
|
op = p1->token.operatr;
|
|
}
|
|
}
|
|
}
|
|
big_bbreak:
|
|
switch (opx2) {
|
|
case 0:
|
|
opx2 = PLUS;
|
|
case PLUS:
|
|
if (diff_sign)
|
|
opx2 = MINUS;
|
|
break;
|
|
case MINUS:
|
|
if (diff_sign)
|
|
opx2 = PLUS;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
blt(scratch, b1p, (char *) x2p - (char *) b1p);
|
|
len = x2p - b1p;
|
|
scratch[len].level = 7;
|
|
scratch[len].kind = CONSTANT;
|
|
if (opx2 == MINUS)
|
|
scratch[len].token.constant = -1.0;
|
|
else
|
|
scratch[len].token.constant = 1.0;
|
|
len++;
|
|
blt(&scratch[len], b2p, (char *) b2ep - (char *) b2p);
|
|
len += (b2ep - b2p);
|
|
blen = len;
|
|
j = min_level(scratch, len);
|
|
j = 7 - j;
|
|
for (i = 0; i < len; i++)
|
|
scratch[i].level += j;
|
|
scratch[len].level = 6;
|
|
scratch[len].kind = OPERATOR;
|
|
scratch[len].token.operatr = POWER;
|
|
len++;
|
|
scratch[len].level = 6;
|
|
scratch[len].kind = CONSTANT;
|
|
scratch[len].token.constant = 2.0;
|
|
len++;
|
|
scratch[len].level = 5;
|
|
scratch[len].kind = OPERATOR;
|
|
scratch[len].token.operatr = MINUS;
|
|
len++;
|
|
scratch[len].level = 6;
|
|
scratch[len].kind = CONSTANT;
|
|
scratch[len].token.constant = 4.0;
|
|
len++;
|
|
scratch[len].level = 6;
|
|
scratch[len].kind = OPERATOR;
|
|
scratch[len].token.operatr = TIMES;
|
|
len++;
|
|
aloc = len;
|
|
blt(&scratch[len], a1p, (char *) x1p - (char *) a1p);
|
|
len += (x1p - a1p);
|
|
scratch[len].level = 7;
|
|
scratch[len].kind = CONSTANT;
|
|
if (opx1 == MINUS)
|
|
scratch[len].token.constant = -1.0;
|
|
else
|
|
scratch[len].token.constant = 1.0;
|
|
len++;
|
|
blt(&scratch[len], a2p, (char *) a2ep - (char *) a2p);
|
|
len += (a2ep - a2p);
|
|
alen = len - aloc;
|
|
j = min_level(&scratch[aloc], len - aloc);
|
|
j = 7 - j;
|
|
for (i = aloc; i < len; i++)
|
|
scratch[i].level += j;
|
|
scratch[len].level = 6;
|
|
scratch[len].kind = OPERATOR;
|
|
scratch[len].token.operatr = TIMES;
|
|
len++;
|
|
k = len;
|
|
scratch[len] = zero_token;
|
|
len++;
|
|
for (p2 = p1 = trhs;; p1++) {
|
|
if (p1 >= ep || (p1->level == 1 && p1->kind == OPERATOR)) {
|
|
if (!((p2 <= x1p && p1 > x1p) || (p2 <= x2p && p1 > x2p))) {
|
|
if (p2 == trhs) {
|
|
scratch[len].level = 1;
|
|
scratch[len].kind = OPERATOR;
|
|
scratch[len].token.operatr = PLUS;
|
|
len++;
|
|
}
|
|
blt(&scratch[len], p2, (char *) p1 - (char *) p2);
|
|
len += (p1 - p2);
|
|
}
|
|
if (p1 >= ep)
|
|
break;
|
|
else
|
|
p2 = p1;
|
|
}
|
|
}
|
|
for (i = k; i < len; i++)
|
|
scratch[i].level += 6;
|
|
scratch[len].level = 4;
|
|
scratch[len].kind = OPERATOR;
|
|
scratch[len].token.operatr = POWER;
|
|
len++;
|
|
scratch[len].level = 4;
|
|
scratch[len].kind = CONSTANT;
|
|
scratch[len].token.constant = 0.5;
|
|
len++;
|
|
scratch[len].level = 3;
|
|
scratch[len].kind = OPERATOR;
|
|
scratch[len].token.operatr = TIMES;
|
|
len++;
|
|
scratch[len].level = 3;
|
|
scratch[len].kind = VARIABLE;
|
|
next_sign(&scratch[len].token.variable);
|
|
len++;
|
|
scratch[len].level = 2;
|
|
scratch[len].kind = OPERATOR;
|
|
scratch[len].token.operatr = MINUS;
|
|
len++;
|
|
if (len + blen + 3 + alen > n_tokens) {
|
|
error_huge();
|
|
}
|
|
blt(&scratch[len], scratch, blen * sizeof(token_type));
|
|
len += blen;
|
|
scratch[len].level = 1;
|
|
scratch[len].kind = OPERATOR;
|
|
scratch[len].token.operatr = DIVIDE;
|
|
len++;
|
|
scratch[len].level = 2;
|
|
scratch[len].kind = CONSTANT;
|
|
scratch[len].token.constant = 2.0;
|
|
len++;
|
|
scratch[len].level = 2;
|
|
scratch[len].kind = OPERATOR;
|
|
scratch[len].token.operatr = TIMES;
|
|
len++;
|
|
blt(&scratch[len], &scratch[aloc], alen * sizeof(token_type));
|
|
len += alen;
|
|
if (found_var(scratch, len, v))
|
|
return false;
|
|
blt(tlhs, x1_storage, nx1 * sizeof(token_type));
|
|
n_tlhs = nx1;
|
|
simp_loop(tlhs, &n_tlhs);
|
|
blt(trhs, scratch, len * sizeof(token_type));
|
|
n_trhs = len;
|
|
simp_loop(trhs, &n_trhs);
|
|
list_tdebug(2);
|
|
uf_tsimp(trhs, &n_trhs); /* don't unfactor result so much, just unfactor what will be unfactored anyway */
|
|
simps_side(trhs, &n_trhs, false);
|
|
list_tdebug(1);
|
|
debug_string(0, _("Equation was solved with the quadratic formula."));
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* This is the heart of Mathomatic solving:
|
|
* It applies an identical mathematical operation to both sides of an equation.
|
|
*
|
|
* Solving in Mathomatic is almost entirely based on the rule:
|
|
* y = f(x)
|
|
* g(y) = g(f(x))
|
|
* where f() and g() are any function, and:
|
|
* arcf(y) = arcf(f(x))
|
|
* arcf(y) = x
|
|
* where arcf() is the inverse function of f().
|
|
* An equality will remain an equality
|
|
* when both sides of the equation are operated on by the same mathematical operation.
|
|
* Some simplification is also necessary during solving, though it is not done in this routine.
|
|
*
|
|
* Apply the inverse of the operation "op" followed by expression "operandp",
|
|
* which is somewhere in "side1p", to both sides of an equation,
|
|
* which is "side1p" and "side2p".
|
|
*
|
|
* Return true unless something is wrong.
|
|
*/
|
|
static int
|
|
g_of_f(op, operandp, side1p, side1np, side2p, side2np)
|
|
int op; /* current operator */
|
|
token_type *operandp; /* operand pointer */
|
|
token_type *side1p; /* equation side pointer */
|
|
int *side1np; /* pointer to the length of "side1p" */
|
|
token_type *side2p; /* equation side pointer */
|
|
int *side2np; /* pointer to the length of "side2p" */
|
|
{
|
|
token_type *p1, *p2, *ep;
|
|
int oldn, operandn;
|
|
double numerator, denominator;
|
|
double d1, d2;
|
|
complexs c1, c2;
|
|
char var_name_buf[MAX_VAR_LEN];
|
|
|
|
oldn = *side1np;
|
|
ep = &side1p[oldn];
|
|
if (operandp < side1p || operandp >= ep) {
|
|
error_bug("g_of_f() called with invalid operandp.");
|
|
}
|
|
if (*side1np == prev_n1 && *side2np == prev_n2) {
|
|
if (++repeat_count >= 4) {
|
|
debug_string(1, _("Infinite loop aborted in solve routine."));
|
|
return false;
|
|
}
|
|
} else {
|
|
prev_n1 = *side1np;
|
|
prev_n2 = *side2np;
|
|
repeat_count = 0;
|
|
}
|
|
switch (op) {
|
|
case PLUS:
|
|
case MINUS:
|
|
case TIMES:
|
|
case DIVIDE:
|
|
case POWER:
|
|
case MODULUS:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
for (p1 = operandp + 1; p1 < ep; p1 += 2) {
|
|
if (p1->level == 1) {
|
|
switch (p1->token.operatr) {
|
|
case FACTORIAL:
|
|
op = PLUS;
|
|
continue;
|
|
case MODULUS:
|
|
operandp = p1 + 1;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
operandn = p1 - operandp;
|
|
if (op == POWER && operandp == side1p) {
|
|
if (!parse_complex(side2p, *side2np, &c1))
|
|
return false;
|
|
if (!parse_complex(operandp, operandn, &c2))
|
|
return false;
|
|
debug_string(1, _("Taking logarithm of both equation sides:"));
|
|
errno = 0;
|
|
c1 = complex_div(complex_log(c1), complex_log(c2));
|
|
check_err();
|
|
*side2np = 0;
|
|
side2p[*side2np].level = 1;
|
|
side2p[*side2np].kind = CONSTANT;
|
|
side2p[*side2np].token.constant = c1.re;
|
|
(*side2np)++;
|
|
side2p[*side2np].level = 1;
|
|
side2p[*side2np].kind = OPERATOR;
|
|
side2p[*side2np].token.operatr = PLUS;
|
|
(*side2np)++;
|
|
side2p[*side2np].level = 2;
|
|
side2p[*side2np].kind = CONSTANT;
|
|
side2p[*side2np].token.constant = c1.im;
|
|
(*side2np)++;
|
|
side2p[*side2np].level = 2;
|
|
side2p[*side2np].kind = OPERATOR;
|
|
side2p[*side2np].token.operatr = TIMES;
|
|
(*side2np)++;
|
|
side2p[*side2np].level = 2;
|
|
side2p[*side2np].kind = VARIABLE;
|
|
side2p[*side2np].token.variable = IMAGINARY;
|
|
(*side2np)++;
|
|
|
|
blt(side1p, p1 + 1, (*side1np - (operandn + 1)) * sizeof(token_type));
|
|
*side1np -= operandn + 1;
|
|
return true;
|
|
}
|
|
if (op == MODULUS) {
|
|
if (get_constant(side2p, *side2np, &d1) && get_constant(operandp, operandn, &d2)) {
|
|
if (fabs(d1) >= fabs(d2)) {
|
|
error(_("There are no possible solutions."));
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
#if !SILENT
|
|
if (debug_level > 0) {
|
|
switch (op) {
|
|
case PLUS:
|
|
fprintf(gfp, _("Subtracting"));
|
|
break;
|
|
case MINUS:
|
|
fprintf(gfp, _("Adding"));
|
|
break;
|
|
case TIMES:
|
|
fprintf(gfp, _("Dividing both sides of the equation by"));
|
|
break;
|
|
case DIVIDE:
|
|
fprintf(gfp, _("Multiplying both sides of the equation by"));
|
|
break;
|
|
case POWER:
|
|
fprintf(gfp, _("Raising both sides of the equation to the power of"));
|
|
break;
|
|
case MODULUS:
|
|
fprintf(gfp, _("Applying inverse modulus of"));
|
|
break;
|
|
}
|
|
if (op == POWER && operandn == 1 && operandp->kind == CONSTANT) {
|
|
fprintf(gfp, " %.*g:\n", precision, 1.0 / operandp->token.constant);
|
|
} else {
|
|
fprintf(gfp, " \"");
|
|
if (op == POWER)
|
|
fprintf(gfp, "1/(");
|
|
list_proc(operandp, operandn, false);
|
|
switch (op) {
|
|
case PLUS:
|
|
fprintf(gfp, _("\" from both sides of the equation:\n"));
|
|
break;
|
|
case MINUS:
|
|
case MODULUS:
|
|
fprintf(gfp, _("\" to both sides of the equation:\n"));
|
|
break;
|
|
case POWER:
|
|
fprintf(gfp, ")");
|
|
default:
|
|
fprintf(gfp, "\":\n");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
if (*side1np + operandn + 3 > n_tokens || *side2np + operandn + 5 > n_tokens) {
|
|
error_huge();
|
|
}
|
|
if (min_level(side1p, oldn) <= 1) {
|
|
for (p2 = side1p; p2 < ep; p2++)
|
|
p2->level++;
|
|
}
|
|
ep = &side2p[*side2np];
|
|
if (min_level(side2p, *side2np) <= 1) {
|
|
for (p2 = side2p; p2 < ep; p2++)
|
|
p2->level++;
|
|
}
|
|
p2 = &side1p[oldn];
|
|
switch (op) {
|
|
case MODULUS:
|
|
p2->level = 1;
|
|
p2->kind = OPERATOR;
|
|
p2->token.operatr = PLUS;
|
|
p2++;
|
|
p2->level = 2;
|
|
p2->kind = VARIABLE;
|
|
snprintf(var_name_buf, sizeof(var_name_buf), "%s_any%.0d", V_INTEGER_PREFIX, last_int_var);
|
|
if (parse_var(&p2->token.variable, var_name_buf) == NULL)
|
|
return false;
|
|
last_int_var++;
|
|
if (last_int_var < 0) {
|
|
last_int_var = 0;
|
|
}
|
|
p2++;
|
|
p2->level = 2;
|
|
p2->kind = OPERATOR;
|
|
p2->token.operatr = TIMES;
|
|
p2++;
|
|
blt(p2, operandp, (char *) p1 - (char *) operandp);
|
|
*side1np += 3 + operandn;
|
|
break;
|
|
case POWER:
|
|
p2->level = 1;
|
|
p2->kind = OPERATOR;
|
|
p2->token.operatr = POWER;
|
|
p2++;
|
|
p2->level = 2;
|
|
p2->kind = CONSTANT;
|
|
p2->token.constant = 1.0;
|
|
p2++;
|
|
p2->level = 2;
|
|
p2->kind = OPERATOR;
|
|
p2->token.operatr = DIVIDE;
|
|
p2++;
|
|
blt(p2, operandp, (char *) p1 - (char *) operandp);
|
|
*side1np += 3 + operandn;
|
|
break;
|
|
case TIMES:
|
|
p2->level = 1;
|
|
p2->kind = OPERATOR;
|
|
p2->token.operatr = DIVIDE;
|
|
p2++;
|
|
blt(p2, operandp, (char *) p1 - (char *) operandp);
|
|
*side1np += 1 + operandn;
|
|
break;
|
|
case DIVIDE:
|
|
p2->level = 1;
|
|
p2->kind = OPERATOR;
|
|
p2->token.operatr = TIMES;
|
|
p2++;
|
|
blt(p2, operandp, (char *) p1 - (char *) operandp);
|
|
*side1np += 1 + operandn;
|
|
break;
|
|
case PLUS:
|
|
p2->level = 1;
|
|
p2->kind = OPERATOR;
|
|
p2->token.operatr = MINUS;
|
|
p2++;
|
|
blt(p2, operandp, (char *) p1 - (char *) operandp);
|
|
*side1np += 1 + operandn;
|
|
break;
|
|
case MINUS:
|
|
p2->level = 1;
|
|
p2->kind = OPERATOR;
|
|
p2->token.operatr = PLUS;
|
|
p2++;
|
|
blt(p2, operandp, (char *) p1 - (char *) operandp);
|
|
*side1np += 1 + operandn;
|
|
break;
|
|
}
|
|
blt(&side2p[*side2np], &side1p[oldn], (*side1np - oldn) * sizeof(*side1p));
|
|
*side2np += *side1np - oldn;
|
|
if (op == POWER && operandn == 1 && operandp->kind == CONSTANT) {
|
|
f_to_fraction(operandp->token.constant, &numerator, &denominator);
|
|
if (always_positive(numerator)) {
|
|
ep = &side2p[*side2np];
|
|
for (p2 = side2p; p2 < ep; p2++)
|
|
p2->level++;
|
|
p2->level = 1;
|
|
p2->kind = OPERATOR;
|
|
p2->token.operatr = TIMES;
|
|
p2++;
|
|
p2->level = 1;
|
|
p2->kind = VARIABLE;
|
|
next_sign(&p2->token.variable);
|
|
*side2np += 2;
|
|
}
|
|
}
|
|
if (op == POWER || op == MODULUS) {
|
|
*side1np = (operandp - 1) - side1p;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Take the reciprocal of both equation sides.
|
|
*
|
|
* Return true if successful.
|
|
*/
|
|
static int
|
|
flip(side1p, side1np, side2p, side2np)
|
|
token_type *side1p; /* equation side pointer */
|
|
int *side1np; /* pointer to equation side length */
|
|
token_type *side2p;
|
|
int *side2np;
|
|
{
|
|
token_type *p1, *ep;
|
|
|
|
debug_string(1, _("Taking the reciprocal of both sides of the equation..."));
|
|
if (*side1np + 2 > n_tokens || *side2np + 2 > n_tokens) {
|
|
error_huge();
|
|
}
|
|
ep = &side1p[*side1np];
|
|
for (p1 = side1p; p1 < ep; p1++)
|
|
p1->level++;
|
|
ep = &side2p[*side2np];
|
|
for (p1 = side2p; p1 < ep; p1++)
|
|
p1->level++;
|
|
blt(side1p + 2, side1p, *side1np * sizeof(*side1p));
|
|
*side1np += 2;
|
|
blt(side2p + 2, side2p, *side2np * sizeof(*side2p));
|
|
*side2np += 2;
|
|
|
|
*side1p = one_token;
|
|
side1p++;
|
|
side1p->level = 1;
|
|
side1p->kind = OPERATOR;
|
|
side1p->token.operatr = DIVIDE;
|
|
|
|
*side2p = one_token;
|
|
side2p++;
|
|
side2p->level = 1;
|
|
side2p->kind = OPERATOR;
|
|
side2p->token.operatr = DIVIDE;
|
|
return true;
|
|
}
|