mathomatic/simplify.c

2703 lines
70 KiB
C

/*
* Mathomatic simplifying routines.
*
* Copyright (C) 1987-2012 George Gesslein II.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
The chief copyright holder can be contacted at gesslein@mathomatic.org, or
George Gesslein II, P.O. Box 224, Lansing, NY 14882-0224 USA.
*/
#include "includes.h"
/*
* MAX_COMPARE_TERMS defines the maximum number of terms
* on the same level of parentheses that can be compared.
* Most of the stack usage is related this value.
* Space for this many pointers is reserved on the stack
* with each level of parentheses while comparing two expressions.
*/
#define MAX_COMPARE_TERMS (DEFAULT_N_TOKENS / 6)
static int org_recurse(token_type *equation, int *np, int loc, int level, int *elocp);
static int const_recurse(token_type *equation, int *np, int loc, int level, int iflag);
static int compare_recurse(token_type *p1, int n1, int l1, token_type *p2, int n2, int l2, int *diff_signp);
static int order_recurse(token_type *equation, int *np, int loc, int level);
/*
* Fix up levels of parentheses in an equation side.
* Remove unnecessary parentheses and put similar operators on the same level.
*
* This is the inner-most loop in Mathomatic, make it fast.
*/
void
organize(equation, np)
token_type *equation; /* equation side pointer */
int *np; /* pointer to length of equation side */
{
#if DEBUG
if (equation == NULL || np == NULL) {
error_bug("NULL pointer passed to organize().");
}
#endif
if (*np <= 0 || (*np & 1) == 0) {
printf("Bad expression size = %d.\n", *np);
error_bug("Internal error: organize() called with bad expression size.");
}
if (*np > n_tokens) {
error_bug("Internal error: expression array overflow detected in organize().");
}
org_recurse(equation, np, 0, 1, NULL);
}
static inline void
org_up_level(bp, ep, level, invert)
token_type *bp, *ep;
int level, invert;
{
if (invert) {
for (; bp <= ep; bp++) {
bp->level--;
if (bp->level == level && bp->kind == OPERATOR) {
switch (bp->token.operatr) {
case PLUS:
bp->token.operatr = MINUS;
break;
case MINUS:
bp->token.operatr = PLUS;
break;
case TIMES:
bp->token.operatr = DIVIDE;
break;
case DIVIDE:
bp->token.operatr = TIMES;
break;
}
}
}
} else {
for (; bp <= ep; bp++) {
bp->level--;
}
}
}
/*
* Recurse through every sub-expression in "equation", starting at "loc",
* moving up levels to "level" of parentheses.
*/
static int
org_recurse(equation, np, loc, level, elocp)
token_type *equation; /* equation side pointer */
int *np; /* pointer to length of equation side */
int loc, level, *elocp;
{
token_type *p1, *bp, *ep;
int op, sub_op;
int i;
int eloc;
int sub_eloc;
int min1;
int invert;
bp = &equation[loc];
ep = &equation[*np];
min1 = bp->level;
for (p1 = bp + 1; p1 < ep; p1 += 2) {
if (p1->level < min1) {
if (p1->level < level)
break;
min1 = p1->level;
}
}
ep = p1;
eloc = (ep - equation) - 1;
if (elocp)
*elocp = eloc;
if (eloc == loc) {
bp->level = max(level - 1, 1);
return 0;
}
if (min1 > level) {
for (p1 = bp; p1 < ep; p1++)
p1->level -= min1 - level;
}
op = 0;
for (p1 = bp + 1; p1 < ep; p1 += 2) {
if (p1->level == level) {
op = p1->token.operatr;
break;
}
}
for (i = loc; i <= eloc; i += 2) {
if (equation[i].level > level) {
sub_op = org_recurse(equation, np, i, level + 1, &sub_eloc);
switch (sub_op) {
case PLUS:
case MINUS:
if (op != PLUS && op != MINUS)
break;
invert = (i - 1 >= loc && equation[i-1].token.operatr == MINUS);
org_up_level(&equation[i], &equation[sub_eloc], level, invert);
break;
case TIMES:
case DIVIDE:
if (op != TIMES && op != DIVIDE)
break;
invert = (i - 1 >= loc && equation[i-1].token.operatr == DIVIDE);
org_up_level(&equation[i], &equation[sub_eloc], level, invert);
break;
}
i = sub_eloc;
}
}
return op;
}
/*
* The quickest, most basic simplification loop.
* Just does constant simplification.
*/
void
elim_loop(equation, np)
token_type *equation; /* pointer to the beginning of equation side to simplify */
int *np; /* pointer to length of equation side */
{
if (abort_flag) {
/* Control-C pressed, gracefully return to main prompt and leave unsimplified */
abort_flag = false;
#if DEBUG && !SILENT
char *cp, buf[100];
my_strlcpy(prompt_str, _("Enter debug level, or an empty line to abort the current operation: "), sizeof(prompt_str));
if ((cp = get_string(buf, sizeof(buf))) == NULL || *cp == '\0') {
longjmp(jmp_save, 13);
} else {
debug_level = decstrtol(cp, NULL);
printf(_("Debug level set to %d.\n"), debug_level);
}
#else
longjmp(jmp_save, 13);
#endif
}
side_debug(6, equation, *np);
do {
do {
do {
organize(equation, np);
} while (combine_constants(equation, np, true));
} while (elim_k(equation, np));
} while (simp_pp(equation, np));
if (reorder(equation, np)) {
do {
organize(equation, np);
} while (elim_k(equation, np));
}
side_debug(5, equation, *np);
}
/*
* Configurable high level simplify routine.
*/
void
simp_ssub(equation, np, v, d, power_flag, times_flag, fc_level)
token_type *equation; /* pointer to the beginning of equation side to simplify */
int *np; /* pointer to length of equation side */
long v; /* variable to factor, 0L or MATCH_ANY to factor all variables */
double d; /* factor expressions raised to the power of this if v */
int power_flag; /* factor_power() flag */
int times_flag; /* factor_times() flag */
int fc_level; /* factor constants code, passed to factor_constants() */
{
do {
do {
do {
do {
do {
do {
do {
do {
elim_loop(equation, np);
} while (simp2_power(equation, np));
} while (times_flag && factor_times(equation, np));
} while (elim_sign(equation, np));
} while (subtract_itself(equation, np));
} while (factor_constants(equation, np, fc_level));
} while (factor_divide(equation, np, v, d));
} while (factor_plus(equation, np, v, d));
} while (power_flag && factor_power(equation, np));
}
/*
* Quickly and very basically simplify an equation space.
* No factoring is done.
*/
void
simp_equation(n)
int n; /* equation space number to simplify */
{
if (empty_equation_space(n))
return;
simp_loop(lhs[n], &n_lhs[n]);
if (n_rhs[n] > 0) {
simp_loop(rhs[n], &n_rhs[n]);
}
}
/*
* For quick, mid-range simplification of an equation side.
* Trivial factoring is done.
*/
void
mid_simp_side(equation, np)
token_type *equation; /* pointer to the beginning of equation side to simplify */
int *np; /* pointer to length of equation side */
{
simp_ssub(equation, np, 0L, 1.0, true, true, 6);
}
/*
* For quick, mid-range simplification of an equation space.
* Trivial factoring is done.
*/
void
mid_simp_equation(n)
int n; /* equation space number to simplify */
{
if (empty_equation_space(n))
return;
mid_simp_side(lhs[n], &n_lhs[n]);
if (n_rhs[n] > 0) {
mid_simp_side(rhs[n], &n_rhs[n]);
}
}
/*
* This function is the mid-range simplifier used by the solver.
*/
void
simps_side(equation, np, zsolve)
token_type *equation; /* pointer to the beginning of equation side to simplify */
int *np; /* pointer to length of equation side */
int zsolve; /* true for solving for zero */
{
elim_loop(equation, np);
simp_constant_power(equation, np);
do {
simp_ssub(equation, np, 0L, 0.0, !zsolve, true, 6);
} while (super_factor(equation, np, 0));
}
/*
* This function is used by the factor command.
*/
void
simpv_side(equation, np, v)
token_type *equation; /* pointer to the beginning of equation side to factor */
int *np; /* pointer to length of equation side */
long v; /* variable to factor, 0 for all variables */
{
simp_ssub(equation, np, v, 0.0, v == 0, true, 6);
}
/*
* For factoring an equation space like the factor command.
* Trivial factoring is done.
*/
void
simpv_equation(n, v)
int n; /* equation space number to simplify */
long v; /* Mathomatic variable to factor or 0 */
{
if (empty_equation_space(n))
return;
simpv_side(lhs[n], &n_lhs[n], v);
if (n_rhs[n] > 0) {
simpv_side(rhs[n], &n_rhs[n], v);
}
}
/*
* Factor out and simplify imaginary constants in an equation side.
* Do complex number root approximation and other complex number simplification.
*
* Return true if anything was approximated.
*/
int
factor_imaginary(equation, np)
token_type *equation; /* pointer to the beginning of equation side */
int *np; /* pointer to equation side length */
{
int rv;
rv = approximate_complex_roots(equation, np);
factorv(equation, np, IMAGINARY);
return rv;
}
/*
* Factor out only the specified variable "v" and simplify a little.
* Does not do any approximation.
*
* If v is IMAGINARY, simplify imaginary number division, so that the imaginary unit is
* not in the divisor.
*/
void
factorv(equation, np, v)
token_type *equation; /* pointer to the beginning of equation side to factor */
int *np; /* pointer to equation side length */
long v; /* Mathomatic variable to factor */
{
do {
do {
simp_loop(equation, np);
} while (factor_plus(equation, np, v, 0.0));
} while (v == IMAGINARY && div_imaginary(equation, np));
}
/*
* Simplify and approximate for the calculate command and for more successful comparisons.
* Includes complex number simplification.
*/
void
calc_simp(equation, np)
token_type *equation;
int *np;
{
approximate_roots = true;
subst_constants(equation, np);
mid_simp_side(equation, np);
factor_imaginary(equation, np);
ufactor(equation, np);
factor_imaginary(equation, np);
uf_simp(equation, np);
factor_imaginary(equation, np);
mid_simp_side(equation, np);
make_simple_fractions(equation, np);
uf_tsimp(equation, np);
approximate_roots = false;
}
/*
* Approximate an equation side for the approximate command.
*/
void
approximate(equation, np)
token_type *equation;
int *np;
{
if (repeat_flag) {
/* do more */
calc_simp(equation, np);
} else {
subst_constants(equation, np);
approximate_roots = true;
simp_loop(equation, np);
factor_imaginary(equation, np);
approximate_roots = false;
}
}
/*
* Try to eliminate imaginary units (i#) from an equation side by converting
* expressions like (i#*(b^.5)) to ((-1*b)^.5).
*
* Return true if any imaginary units where substituted.
*/
int
simp_i(equation, np)
token_type *equation;
int *np;
{
int i;
int level;
int rv = false;
simp_loop(equation, np);
for (i = 0; i < *np; i++) {
switch (equation[i].kind) {
case VARIABLE:
if (equation[i].token.variable == IMAGINARY) {
if (*np + 2 > n_tokens) {
error_huge();
}
level = equation[i].level + 1;
blt(&equation[i+2], &equation[i], (*np - i) * sizeof(token_type));
*np += 2;
equation[i].level = level;
equation[i].kind = CONSTANT;
equation[i].token.constant = -1.0;
i++;
equation[i].level = level;
equation[i].kind = OPERATOR;
equation[i].token.operatr = POWER;
i++;
equation[i].level = level;
equation[i].kind = CONSTANT;
equation[i].token.constant = 0.5;
rv = true;
}
break;
case OPERATOR:
#if 0
if (equation[i].token.operatr != POWER)
continue;
level = equation[i].level;
/* Skip imaginary units on the right side of any power operator. */
for (; i < *np && equation[i].level >= level; i += 2)
;
i--;
#endif
break;
case CONSTANT:
break;
}
}
do {
do {
do {
do {
do {
organize(equation, np);
} while (combine_constants(equation, np, false));
} while (elim_k(equation, np));
} while (simp_pp(equation, np));
/* The following factor_power() messes up absolute values and complex numbers sometimes: */
} while (factor_power(equation, np));
} while (factor_times(equation, np));
simp_loop(equation, np);
return rv;
}
/*
* Combine all like denominators.
*/
void
simp_divide(equation, np)
token_type *equation;
int *np;
{
do {
do {
simp_loop(equation, np);
} while (factor_constants(equation, np, 1));
} while (factor_divide(equation, np, 0L, 0.0));
}
/*
* Combine all like denominators containing variable "v".
* Don't call factor_times().
*
* For beauty simplifier simpb_side() below.
*/
void
simp2_divide(equation, np, v, fc_level)
token_type *equation;
int *np;
long v;
int fc_level;
{
do {
do {
do {
do {
do {
elim_loop(equation, np);
} while (simp2_power(equation, np));
} while (elim_sign(equation, np));
} while (subtract_itself(equation, np));
} while (factor_constants(equation, np, fc_level));
} while (factor_divide(equation, np, v, 0.0));
}
/*
* Compare function for qsort(3) within simpb_side() below.
*/
static int
simpb_vcmp(p1, p2)
sort_type *p1, *p2;
{
if (((p1->v & VAR_MASK) == SIGN) == ((p2->v & VAR_MASK) == SIGN)) {
if (p2->count == p1->count) {
if (p1->v < p2->v)
return -1;
if (p1->v == p2->v)
return 0;
return 1;
}
return(p2->count - p1->count);
} else {
if ((p1->v & VAR_MASK) == SIGN) {
return -1;
} else {
return 1;
}
}
}
/*
* Beauty simplifier for equation sides.
* This is the neat simplify and variable factor routine, to make a pleasing display.
* Factors variables in order: "sign" variables first, then by frequency.
*/
void
simpb_side(equation, np, uf_power_flag, power_flag, fc_level)
token_type *equation; /* pointer to the beginning of equation side */
int *np; /* pointer to length of equation side */
int uf_power_flag; /* uf_allpower() flag */
int power_flag; /* factor_power() flag */
int fc_level; /* factor constants code, passed to factor_constants() */
{
int i;
int vc, cnt; /* counts */
long v1, last_v; /* Mathomatic variables */
sort_type va[MAX_VARS]; /* array of all real variables found in equation side */
elim_loop(equation, np);
if (uf_power_flag) {
uf_allpower(equation, np);
}
last_v = 0;
for (vc = 0; vc < ARR_CNT(va);) {
cnt = 0;
v1 = -1;
for (i = 0; i < *np; i += 2) {
if (equation[i].kind == VARIABLE && equation[i].token.variable > last_v) {
if (v1 == -1 || equation[i].token.variable < v1) {
v1 = equation[i].token.variable;
cnt = 1;
} else if (equation[i].token.variable == v1) {
cnt++;
}
}
}
if (v1 == -1)
break;
last_v = v1;
if (v1 > IMAGINARY) { /* ignore constant variables */
va[vc].v = v1;
va[vc].count = cnt;
vc++;
}
}
if (vc) {
/* sort variable array va[] */
qsort((char *) va, vc, sizeof(*va), simpb_vcmp);
/* factor division by most frequently occurring variables first */
simp2_divide(equation, np, va[0].v, fc_level);
for (i = 1; i < vc; i++) {
if (factor_divide(equation, np, va[i].v, 0.0))
simp2_divide(equation, np, va[i].v, fc_level);
}
simp2_divide(equation, np, 0L, fc_level);
/* factor all sub-expressions in order of most frequently occurring variables */
for (i = 0; i < vc; i++) {
while (factor_plus(equation, np, va[i].v, 0.0)) {
simp2_divide(equation, np, 0L, fc_level);
}
}
}
#if 0 /* Messes up support/gcd.in and tests/quartic.in */
make_simple_fractions(equation, np);
#endif
/* make sure equation side is completely factored */
while (factor_divide(equation, np, MATCH_ANY, 0.0)) {
simp2_divide(equation, np, MATCH_ANY, fc_level);
}
while (factor_plus(equation, np, MATCH_ANY, 0.0)) {
simp2_divide(equation, np, 0L, fc_level);
}
simp_ssub(equation, np, MATCH_ANY, 0.0, power_flag, true, fc_level);
#if 0 /* Seems to complicate and change constants slightly when enabled. */
if (power_flag) {
make_simple_fractions(equation, np);
factor_power(equation, np);
simp_ssub(equation, np, MATCH_ANY, 0.0, power_flag, true, fc_level);
}
#endif
}
/*
* Convert expressions with any algebraic fractions into a single simple fraction.
* Used by the fraction command.
*
* Globals tlhs[] and trhs[] are wiped out.
*/
void
simple_frac_side(equation, np)
token_type *equation; /* pointer to the beginning of equation side */
int *np; /* pointer to length of equation side */
{
if (*np == 1) {
make_simple_fractions(equation, np);
fractions_and_group(equation, np);
return;
}
simp_loop(equation, np);
poly_factor(equation, np, true);
do {
do {
do {
simp_ssub(equation, np, 0L, 0.0, false, true, 5);
} while (poly_gcd_simp(equation, np));
} while (uf_power(equation, np));
} while (super_factor(equation, np, 3));
side_debug(2, equation, *np);
make_simple_fractions(equation, np);
uf_tsimp(equation, np);
#if 0 /* Not really needed, but makes it end up the same as the simplify command. */
make_simple_fractions(equation, np);
uf_power(equation, np);
integer_root_simp(equation, np);
simpb_side(equation, np, true, true, 3);
#endif
poly_factor(equation, np, true);
simpb_side(equation, np, true, false, 2);
simpb_side(equation, np, true, false, 2); /* Added for thoroughness, making sure everything is uf_power()ed. */
fractions_and_group(equation, np);
}
/*
* This is the slow and thorough simplify of the simplify command.
* Applies many equivalent algebraic transformations and their inverses (like unfactor and factor),
* then does generalized polynomial simplifications.
*
* Globals tlhs[] and trhs[] are wiped out.
*/
void
simpa_side(equation, np, quick_flag, frac_flag)
token_type *equation; /* pointer to the beginning of equation side to simplify */
int *np; /* pointer to length of the equation side */
int quick_flag; /* "simplify quick" option, simpler with no (x+1)^2 expansion */
int frac_flag; /* "simplify fraction" option, simplify to the ratio of two polynomials */
{
int i;
int flag, poly_flag = true;
jmp_buf save_save;
if (*np == 1) { /* no need to full simplify a single constant or variable */
make_simple_fractions(equation, np);
simpb_side(equation, np, true, !frac_flag, 2);
return;
}
debug_string(2, "Simplify input:");
side_debug(2, equation, *np);
simp_loop(equation, np);
#if 1
do {
simp_ssub(equation, np, 0L, 1.0, false, true, 5);
} while (uf_power(equation, np));
while (factor_power(equation, np)) {
simp_loop(equation, np);
}
#else
simpb_side(equation, np, false, true, 5);
#endif
if (rationalize_denominators) {
rationalize(equation, np);
}
unsimp_power(equation, np);
uf_tsimp(equation, np);
/* Here is the only place in Mathomatic that we do complete modulus (%) simplification: */
uf_pplus(equation, np);
uf_repeat(equation, np);
do {
elim_loop(equation, np);
} while (mod_simp(equation, np));
/* Here we try to simplify out unnecessary negative constants and imaginary numbers: */
simp_i(equation, np);
unsimp_power(equation, np);
uf_times(equation, np);
simp_ssub(equation, np, 0L, 1.0, true, true, 5);
unsimp_power(equation, np);
uf_neg_help(equation, np);
uf_tsimp(equation, np);
do {
do {
simp_ssub(equation, np, 0L, 1.0, false, true, 6);
} while (uf_power(equation, np));
} while (!quick_flag && super_factor(equation, np, 2));
if (poly_gcd_simp(equation, np)) {
simp_ssub(equation, np, 0L, 1.0, false, true, 6);
}
side_debug(2, equation, *np);
unsimp_power(equation, np);
uf_times(equation, np);
factorv(equation, np, IMAGINARY);
uf_pplus(equation, np);
simp_ssub(equation, np, 0L, 1.0, true, false, 5);
if (poly_gcd_simp(equation, np)) {
factorv(equation, np, IMAGINARY);
uf_pplus(equation, np);
simp_ssub(equation, np, 0L, 1.0, true, false, 5);
}
uf_times(equation, np);
uf_pplus(equation, np);
factor_imaginary(equation, np);
uf_power(equation, np);
do {
do {
simp_ssub(equation, np, 0L, 1.0, false, true, 6);
} while (uf_power(equation, np));
} while (!quick_flag && super_factor(equation, np, 2));
/* Here we do the greatest expansion; if it fails, do less expansion. */
partial_flag = frac_flag;
n_tlhs = *np;
blt(tlhs, equation, n_tlhs * sizeof(token_type));
blt(save_save, jmp_save, sizeof(jmp_save));
if ((i = setjmp(jmp_save)) != 0) { /* trap errors */
blt(jmp_save, save_save, sizeof(jmp_save));
if (i == 13) { /* critical error code */
longjmp(jmp_save, i);
}
/* an error occurred, restore the original expression */
*np = n_tlhs;
blt(equation, tlhs, n_tlhs * sizeof(token_type));
if (i == 14) {
debug_string(1, "Simplify not expanding fully, due to oversized expression.");
} else {
debug_string(0, "Simplify not expanding fully, due to some error.");
}
partial_flag = true; /* expand less */
uf_tsimp(equation, np);
} else {
if (quick_flag) {
uf_tsimp(equation, np);
} else {
/* expand powers of 2 and higher, might result in error_huge() trap */
do {
uf_power(equation, np);
uf_repeat(equation, np);
} while (uf_tsimp(equation, np));
}
blt(jmp_save, save_save, sizeof(jmp_save));
}
partial_flag = true;
simpb_side(equation, np, true, true, 2);
debug_string(1, "Simplify result before applying polynomial operations:");
side_debug(1, equation, *np);
for (flag = false;;) {
/* divide top and bottom of fractions by any polynomial GCD found */
if (poly_gcd_simp(equation, np)) {
flag = false;
simpb_side(equation, np, false, true, 3);
}
/* factor polynomials */
if (!flag && poly_factor(equation, np, true)) {
flag = true;
simpb_side(equation, np, false, true, 3);
continue;
}
/* simplify algebraic fractions with polynomial and smart division */
if (!frac_flag && div_remainder(equation, np, poly_flag, quick_flag)) {
flag = false;
simpb_side(equation, np, false, true, 3);
continue;
}
break;
}
debug_string(2, "Raw simplify result after applying polynomial operations:");
side_debug(2, equation, *np);
simp_constant_power(equation, np);
simp_ssub(equation, np, 0L, 1.0, true, true, 5);
unsimp_power(equation, np);
make_simple_fractions(equation, np);
factor_power(equation, np);
uf_tsimp(equation, np);
make_simple_fractions(equation, np);
uf_power(equation, np);
integer_root_simp(equation, np);
simpb_side(equation, np, true, true, 3);
poly_factor(equation, np, true);
simpb_side(equation, np, true, !frac_flag, 2);
}
/*
* This routine is used by the simplify command,
* and is the slowest and most thorough simplify of all.
* It repeats the simplification until the smallest expression is achieved,
* if repeat_flag is true.
*
* Globals tes[], tlhs[], and trhs[] are wiped out.
*/
void
simpa_repeat_side(equation, np, quick_flag, frac_flag)
token_type *equation; /* pointer to the beginning of equation side to simplify */
int *np; /* pointer to length of the equation side */
int quick_flag; /* "simplify quick" option, simpler fractions with no (x+1)^2 expansion */
int frac_flag; /* "simplify fraction" option, simplify to the ratio of two polynomials */
{
if (*np <= 0)
return;
simpa_side(equation, np, quick_flag, frac_flag);
if (repeat_flag && *np > 1) {
do {
n_tes = *np;
blt(tes, equation, n_tes * sizeof(token_type));
simpa_side(equation, np, quick_flag, frac_flag);
} while (*np < n_tes);
if (*np != n_tes) {
*np = n_tes;
blt(equation, tes, n_tes * sizeof(token_type));
}
}
}
/*
* Completely and repeatedly (if repeat_flag) simplify an equation space to the smallest possible size.
*
* Globals tes[], tlhs[], and trhs[] are clobbered.
*/
void
simpa_repeat(n, quick_flag, frac_flag)
int n; /* equation space number to simplify */
int quick_flag; /* "simplify quick" option, simpler fractions with no (x+1)^2 expansion */
int frac_flag; /* "simplify fraction" option, simplify to the ratio of two polynomials */
{
if (empty_equation_space(n))
return;
simpa_repeat_side(lhs[n], &n_lhs[n], quick_flag, frac_flag);
if (n_rhs[n] > 0) {
simpa_repeat_side(rhs[n], &n_rhs[n], quick_flag, frac_flag);
}
}
/*
* This routine is used by the fraction command.
* It repeats the simplification until the smallest expression is achieved,
* if repeat_flag is true.
*
* Globals tes[], tlhs[], and trhs[] are wiped out.
*/
void
simple_frac_repeat_side(equation, np)
token_type *equation; /* pointer to the beginning of equation side to simplify */
int *np; /* pointer to length of the equation side */
{
if (*np <= 0)
return;
simple_frac_side(equation, np);
if (repeat_flag) {
do {
n_tes = *np;
blt(tes, equation, n_tes * sizeof(token_type));
simple_frac_side(equation, np);
} while (*np < n_tes);
if (*np != n_tes) {
*np = n_tes;
blt(equation, tes, n_tes * sizeof(token_type));
}
}
}
/*
* Commonly used quick simplify routine that doesn't factor.
*
* Return true if factor_times() did something.
*/
int
simp_loop(equation, np)
token_type *equation; /* pointer to the beginning of equation side to simplify */
int *np; /* pointer to length of equation side */
{
int i;
int rv = false;
do {
do {
do {
do {
elim_loop(equation, np);
} while (simp2_power(equation, np));
i = factor_times(equation, np);
if (i)
rv = true;
} while (i);
} while (elim_sign(equation, np));
} while (subtract_itself(equation, np));
return rv;
}
/*
* Convert (x^n)^m to x^(n*m) when appropriate.
* Fixed to work the same as Maxima when symb_flag is false,
* otherwise always converts (x^n)^m to x^(n*m), which sometimes simplifies more.
*
* Earlier versions of Mathomatic always converted (x^n)^m to x^(n*m),
* which is the wrong thing to do, because they are not always equivalent.
* That is now the job of the "simplify symbolic" command, which sets symb_flag to true.
*
* Return true if equation side was modified.
*/
int
simp_pp(equation, np)
token_type *equation;
int *np;
{
int i, j, k;
int ilevel, jlevel;
int modified = false;
double numerator, denominator;
for (i = 1; i < *np; i += 2) {
#if DEBUG
if (equation[i].kind != OPERATOR) {
error_bug("Bug found in simp_pp(), operators are misplaced.");
}
#endif
if (equation[i].token.operatr != POWER)
continue;
ilevel = equation[i].level;
for (j = i + 2; j < *np; j += 2) {
jlevel = equation[j].level;
if (jlevel == ilevel - 1 && equation[j].token.operatr == POWER) {
if (!symb_flag && (equation[i-1].level != ilevel || equation[i-1].kind != CONSTANT || equation[i-1].token.constant < 0)) {
if (jlevel == equation[j+1].level && equation[j+1].kind == CONSTANT) {
f_to_fraction(equation[j+1].token.constant, &numerator, &denominator);
if (fmod(denominator, 2.0) == 0.0) {
if ((i + 2) == j && equation[i+1].kind == CONSTANT) {
f_to_fraction(equation[i+1].token.constant, &numerator, &denominator);
if (fmod(numerator, 2.0) == 0.0) {
break;
}
} else
break;
}
} else {
if ((i + 2) == j && equation[i+1].kind == CONSTANT) {
f_to_fraction(equation[i+1].token.constant, &numerator, &denominator);
if (fmod(numerator, 2.0) == 0.0) {
break;
}
} else
break;
}
}
equation[j].token.operatr = TIMES;
for (k = j; k < *np && equation[k].level >= jlevel; k++) {
equation[k].level += 2;
}
for (k = i + 1; k < j; k++)
equation[k].level++;
i -= 2;
modified = true;
break;
}
if (jlevel <= ilevel)
break;
}
}
return modified;
}
/*
* Simplify surds like 12^(1/2) to 2*3^(1/2).
*
* Return true if equation side was modified.
*/
int
integer_root_simp(equation, np)
token_type *equation;
int *np;
{
int modified = false;
int i, j;
int level;
double d1, d2, numerator, denominator;
for (i = 1; (i + 3) < *np; i += 2) {
#if DEBUG
if (equation[i].kind != OPERATOR) {
error_bug("Bug found in integer_root_simp(), operators are misplaced.");
}
#endif
if (equation[i].token.operatr == POWER) {
level = equation[i].level;
if (equation[i-1].level == level
&& equation[i+1].level == level + 1
&& equation[i+2].level == level + 1
&& equation[i+3].level == level + 1
&& equation[i+2].token.operatr == DIVIDE
&& equation[i-1].kind == CONSTANT
&& equation[i+1].kind == CONSTANT
&& equation[i+3].kind == CONSTANT) {
if ((i + 4) < *np && equation[i+4].level >= level)
continue;
numerator = equation[i+1].token.constant;
if (numerator > 50.0 || numerator < 1.0 || fmod(numerator, 1.0) != 0.0)
continue;
denominator = equation[i+3].token.constant;
if (denominator > 50.0 || denominator < 2.0 || fmod(denominator, 1.0) != 0.0)
continue;
errno = 0;
d2 = pow(equation[i-1].token.constant, numerator);
if (errno) {
continue;
}
if (!factor_one(d2))
continue;
d1 = 1.0;
for (j = 0; j < uno; j++) {
if (unique[j] > 0.0) {
while (ucnt[j] >= denominator) {
d1 *= unique[j];
ucnt[j] -= denominator;
}
}
}
if (d1 == 1.0)
continue;
if (*np + 2 > n_tokens) {
error_huge();
}
equation[i+1].token.constant = 1.0;
equation[i-1].token.constant = multiply_out_unique();
for (j = i - 1; j < (i + 4); j++) {
equation[j].level++;
}
blt(&equation[i+1], &equation[i-1], (*np - (i - 1)) * sizeof(token_type));
*np += 2;
equation[i-1].level = level;
equation[i-1].kind = CONSTANT;
equation[i-1].token.constant = d1;
equation[i].level = level;
equation[i].kind = OPERATOR;
equation[i].token.operatr = TIMES;
modified = true;
i += 4;
}
}
}
return modified;
}
/*
* Simplify constant^(constant*x) to (constant^constant)^x.
* I am not sure if this is a good thing, because it changes the base of the exponent.
* The tests don't require this routine.
*
* Return true if equation side was modified.
*/
int
simp_constant_power(equation, np)
token_type *equation;
int *np;
{
int i, j;
int level;
int modified = false;
for (i = 1; i < *np; i += 2) {
if (equation[i].token.operatr != POWER) {
continue;
}
level = equation[i].level;
if (equation[i-1].level != level || equation[i-1].kind != CONSTANT)
continue;
if (equation[i-1].token.constant < 0 && !symb_flag)
continue;
if (equation[i+1].level != level + 1 || equation[i+1].kind != CONSTANT
|| equation[i+1].token.constant == 1.0)
continue;
j = i + 2;
if (j >= *np || equation[j].level != level + 1)
continue;
switch (equation[j].token.operatr) {
case TIMES:
break;
case DIVIDE:
if (*np + 2 > n_tokens) {
error_huge();
}
blt(&equation[j+2], &equation[j], (*np - j) * sizeof(token_type));
*np += 2;
equation[j+1].level = level + 1;
equation[j+1].kind = CONSTANT;
equation[j+1].token.constant = 1.0;
break;
default:
continue;
}
equation[j].level = level;
equation[j].token.operatr = POWER;
equation[i-1].level++;
equation[i].level++;
modified = true;
}
return modified;
}
/*
* Convert x^-y to 1/(x^y).
*
* Return true if equation side was modified.
*/
int
simp2_power(equation, np)
token_type *equation;
int *np;
{
int i, i1, j, k;
int level;
int op;
int modified = false;
for (i = 1; i < *np; i += 2) {
if (equation[i].token.operatr == POWER) {
level = equation[i].level;
op = 0;
k = -1;
for (j = i + 1; j < *np && equation[j].level >= level; j++) {
if (equation[j].level == level + 1) {
if (equation[j].kind == OPERATOR) {
op = equation[j].token.operatr;
} else if (equation[j].kind == CONSTANT && equation[j].token.constant < 0.0) {
k = j;
}
}
}
if (j - i <= 2 && equation[i+1].kind == CONSTANT && equation[i+1].token.constant < 0.0) {
k = i + 1;
} else if (k < 0)
continue;
switch (op) {
case 0:
case TIMES:
case DIVIDE:
if (*np + 2 > n_tokens) {
error_huge();
}
equation[k].token.constant = -equation[k].token.constant;
for (k = i - 2;; k--) {
if (k < 0 || equation[k].level < level)
break;
}
k++;
for (i1 = k; i1 < j; i1++)
equation[i1].level++;
blt(&equation[k+2], &equation[k], (*np - k) * sizeof(token_type));
*np += 2;
equation[k].level = level;
equation[k].kind = CONSTANT;
equation[k].token.constant = 1.0;
k++;
equation[k].level = level;
equation[k].kind = OPERATOR;
equation[k].token.operatr = DIVIDE;
modified = true;
}
}
}
return modified;
}
/*
* fmod(3) in the standard C math library has some problems.
* Hopefully this fixes them.
*/
double
fixed_fmod(k1, k2)
double k1, k2;
{
double d;
if (k2 == 0 || !isfinite(k1) || !isfinite(k2) || (fmod(k1, 1.0) == 0 && fmod(k2, 1.0) == 0)) {
k1 = fmod(k1, k2);
} else {
/* fmod() doesn't work well with fractional amounts. */
/* Another way to get the remainder of division: */
k1 = modf(k1 / k2, &d) * k2;
}
return k1;
}
/*
* Combine two or more constants on the same level of parentheses.
* If "iflag" is false, don't produce imaginary numbers.
*
* Return true if equation side was modified.
*/
int
combine_constants(equation, np, iflag)
token_type *equation; /* pointer to the beginning of equation side */
int *np; /* pointer to length of equation side */
int iflag; /* produce imaginary numbers flag */
{
return const_recurse(equation, np, 0, 1, iflag);
}
/*
* Do the floating point arithmetic for Mathomatic.
*
* Return true if successful.
* domain_check must be set to false after this.
*/
int
calc(op1p, k1p, op2, k2)
int *op1p; /* Pointer to operator 1, which comes immediately before operand 1 if this operator exists. */
double *k1p; /* Pointer to operand 1 and where to store the result of the calculation. */
int op2; /* Operator 2; always exists and comes immediately before operand 2, and usually after operand 1. */
double k2; /* Operand 2; ignored for unary operators. */
{
#if _REENTRANT
int sign = 1;
#endif
int op1;
double d, d1, d2;
domain_check = false;
errno = 0;
if (op1p) {
op1 = *op1p;
} else {
op1 = 0;
}
switch (op2) {
case PLUS:
case MINUS:
if (op1 == MINUS)
d = -(*k1p);
else
d = *k1p;
d1 = fabs(d) * epsilon;
if (op2 == PLUS) {
d += k2;
} else {
d -= k2;
}
if (fabs(d) < d1)
d = 0.0;
if (op1 == 0) {
*k1p = d;
} else {
if (d >= 0.0) {
*op1p = PLUS;
*k1p = d;
} else {
*op1p = MINUS;
*k1p = -d;
}
}
break;
case TIMES:
case DIVIDE:
if (op1 == 0)
op1 = TIMES;
if (op1 == op2) {
*k1p *= k2;
} else {
if (op1 == DIVIDE) {
check_divide_by_zero(*k1p);
*k1p = k2 / *k1p;
*op1p = TIMES;
} else if (op2 == DIVIDE) {
check_divide_by_zero(k2);
*k1p = *k1p / k2;
}
}
break;
case IDIVIDE:
check_divide_by_zero(k2);
modf(*k1p / k2, k1p);
break;
case MODULUS:
if (k2 == 0) {
warning(_("Modulo 0 encountered."));
}
*k1p = fixed_fmod(*k1p, k2);
if (modulus_mode && *k1p < 0.0) {
*k1p += fabs(k2); /* make positive */
}
if (modulus_mode == 1 && k2 < 0.0 && *k1p > 0.0) {
*k1p += k2; /* make negative */
}
/* modulus_mode == 0 result same sign as dividend,
modulus_mode == 1 result same sign as divisor,
modulus_mode == 2 result is always positive or zero */
break;
case POWER:
if (*k1p < 0.0 && fmod(k2, 1.0) != 0.0) {
/* it's probably imaginary; pow() will give a domain error, so skip these calculations */
break;
}
domain_check = true;
if (*k1p == 0.0 && k2 == 0.0) {
warning(_("0^0 encountered, might be considered indeterminate."));
d = 1.0; /* 0^0 = 1 */
} else if (*k1p == 0 && k2 < 0.0) {
warning(_("Divide by zero (0 raised to negative power)."));
d = INFINITY;
} else {
d = pow(*k1p, k2);
if (preserve_surds && !approximate_roots) {
if (isfinite(k2) && fmod(k2, 1.0) != 0.0 && f_to_fraction(*k1p, &d1, &d2)) {
if (!f_to_fraction(d, &d1, &d2)) {
domain_check = false;
return false;
}
}
}
}
#if 1
if (errno == ERANGE) { /* preserve overflowed powers rather than aborting with an error message */
domain_check = false;
return false;
}
#endif
check_err();
if (domain_check)
*k1p = d;
break;
case FACTORIAL:
#if NOGAMMA
#warning "Using integer factorial only."
/* calculate integer factorial if gamma() functions don't exist */
if (*k1p > 170.0 || *k1p < 0.0 || fmod(*k1p, 1.0) != 0.0) {
return false;
}
d = 1.0;
for (d1 = 2.0; d1 <= *k1p; d1 += 1.0) {
d *= d1;
}
#else
#if _XOPEN_SOURCE >= 600 || _ISOC99_SOURCE || __USE_ISOC99 || MINGW || __APPLE__ || USE_TGAMMA
/* Use true gamma for factorial if available, it is the nicest gamma() function. */
/* Problem is I don't know how to properly tell if it is available. */
d = tgamma(*k1p + 1.0);
if (errno) { /* don't evaluate if overflow */
return false;
}
#else
#if !_REENTRANT
#warning "Using lgamma(3); Not a problem, but tgamma(3) is more direct, if available."
d = exp(lgamma(*k1p + 1.0)) * signgam;
#else /* use re-entrant version: */
#warning "Using lgamma_r(3); Not a problem, but tgamma(3) is more direct, if available."
d = exp(lgamma_r(*k1p + 1.0, &sign));
d *= sign;
#endif
/* Just compile with -DUSE_TGAMMA, if tgamma(3) is available and not being used. */
if (errno) { /* don't evaluate if overflow */
return false;
}
#endif
#endif
*k1p = d;
break;
default:
return false;
}
return true;
}
static int
const_recurse(equation, np, loc, level, iflag)
token_type *equation;
int *np, loc, level, iflag;
{
int loc1, old_loc;
int const_count = 0;
int op;
int modified = false;
double d1, d2, d3, numerator, denominator;
complexs cv, p;
loc1 = old_loc = loc;
for (;; loc++) {
beginning:
if (loc >= *np || equation[loc].level < level) {
if (loc - old_loc == 1) /* decrement the level of parentheses if only one constant left */
equation[old_loc].level = max(level - 1, 1);
return modified;
}
if (equation[loc].level > level) {
modified |= const_recurse(equation, np, loc, level + 1, iflag);
for (; loc < *np && equation[loc].level > level; loc++)
;
goto beginning;
}
if (equation[loc].kind == CONSTANT) {
if (const_count == 0) {
loc1 = loc;
const_count++;
continue;
}
op = equation[loc-1].token.operatr;
d1 = equation[loc1].token.constant;
d2 = equation[loc].token.constant;
if (calc((loc1 <= old_loc) ? NULL : &equation[loc1-1].token.operatr, &d1, op, d2)) {
if (op == POWER && !domain_check) {
if (!f_to_fraction(d2, &numerator, &denominator)) { /* if irrational power */
if (!iflag || (preserve_surds && !approximate_roots))
return modified;
cv.re = d1;
cv.im = 0.0;
p.re = d2;
p.im = 0.0;
cv = complex_pow(cv, p);
if (*np + 2 > n_tokens) {
error_huge();
}
blt(&equation[loc1+2], &equation[loc1], (*np - loc1) * sizeof(token_type));
*np += 2;
equation[loc1].level = level;
equation[loc1].kind = CONSTANT;
equation[loc1].token.constant = cv.re;
loc1++;
equation[loc1].level = level;
equation[loc1].kind = OPERATOR;
equation[loc1].token.operatr = PLUS;
level++;
equation[loc].level = level;
equation[loc].kind = VARIABLE;
equation[loc].token.variable = IMAGINARY;
loc++;
equation[loc].level = level;
equation[loc].kind = OPERATOR;
equation[loc].token.operatr = TIMES;
loc++;
equation[loc].level = level;
equation[loc].kind = CONSTANT;
equation[loc].token.constant = cv.im;
return true;
}
errno = 0;
d3 = pow(-d1, d2);
check_err();
if (!always_positive(denominator)) {
if (*np + 2 > n_tokens) {
error_huge();
}
blt(&equation[loc1+2], &equation[loc1], (*np - loc1) * sizeof(token_type));
*np += 2;
equation[loc1].level = level + 1;
equation[loc1].kind = CONSTANT;
equation[loc1].token.constant = -d1;
loc1++;
equation[loc1].level = level + 1;
equation[loc1].kind = OPERATOR;
equation[loc1].token.operatr = POWER;
equation[loc].level = level + 1;
equation[loc].kind = CONSTANT;
equation[loc].token.constant = d2;
loc++;
equation[loc].level = level;
equation[loc].kind = OPERATOR;
equation[loc].token.operatr = TIMES;
loc++;
equation[loc].level = level;
equation[loc].kind = CONSTANT;
if (always_positive(numerator)) {
equation[loc].token.constant = 1.0;
} else {
equation[loc].token.constant = -1.0;
}
return true;
}
if (!iflag)
return modified;
if (*np + 2 > n_tokens) {
error_huge();
}
blt(&equation[loc1+2], &equation[loc1], (*np - loc1) * sizeof(token_type));
*np += 2;
if (d2 == 0.5) {
equation[loc1].level = level + 1;
equation[loc1].kind = CONSTANT;
equation[loc1].token.constant = -d1;
loc1++;
equation[loc1].level = level + 1;
equation[loc1].kind = OPERATOR;
equation[loc1].token.operatr = POWER;
equation[loc].level = level + 1;
equation[loc].kind = CONSTANT;
equation[loc].token.constant = d2;
loc++;
equation[loc].level = level;
equation[loc].kind = OPERATOR;
equation[loc].token.operatr = TIMES;
loc++;
equation[loc].level = level;
equation[loc].kind = VARIABLE;
equation[loc].token.variable = IMAGINARY;
} else {
equation[loc1].level = level;
equation[loc1].kind = CONSTANT;
equation[loc1].token.constant = d3;
loc1++;
equation[loc1].level = level;
equation[loc1].kind = OPERATOR;
equation[loc1].token.operatr = TIMES;
level++;
equation[loc].level = level;
equation[loc].kind = VARIABLE;
equation[loc].token.variable = IMAGINARY;
loc++;
equation[loc].level = level;
equation[loc].kind = OPERATOR;
equation[loc].token.operatr = POWER;
loc++;
equation[loc].level = level;
equation[loc].kind = CONSTANT;
equation[loc].token.constant = d2 * 2.0;
}
return true;
} else {
equation[loc1].token.constant = d1;
modified = true;
domain_check = false;
blt(&equation[loc-1], &equation[loc+1], (*np - (loc + 1)) * sizeof(token_type));
*np -= 2;
loc -= 2;
}
} else {
domain_check = false;
}
}
}
}
/*
* Eliminate or fix operations involving constants that can be simplified or normalized.
*
* Return true if equation side was significantly modified.
*/
int
elim_k(equation, np)
token_type *equation; /* equation side pointer */
int *np; /* pointer to length of equation side */
{
token_type *p1, *p2, *p3, *p4;
token_type *ep; /* end pointer */
int modified = false;
int level;
double d, numerator, denominator;
int flag;
for (p1 = equation + 1;;) {
ep = &equation[*np];
if (p1 >= ep)
break;
if (p1->kind != OPERATOR) {
p1++;
continue;
}
level = p1->level;
switch (p1->token.operatr) {
case PLUS:
case MINUS:
/* Fix addition/subtraction of negative, zero, or infinity constants. */
p2 = p1 + 1;
if (p1 + 2 < ep && (p1 + 2)->level == level + 1
&& ((p1 + 2)->token.operatr == TIMES || (p1 + 2)->token.operatr == DIVIDE)
&& p2->kind == CONSTANT && p2->token.constant < 0.0) {
if (p1->token.operatr == PLUS)
p1->token.operatr = MINUS;
else
p1->token.operatr = PLUS;
p2->token.constant = -(p2->token.constant);
}
if (p2->level == level && p2->kind == CONSTANT) {
if (p2->token.constant < 0.0) {
if (p1->token.operatr == PLUS)
p1->token.operatr = MINUS;
else
p1->token.operatr = PLUS;
p2->token.constant = -p2->token.constant;
}
if (p2->token.constant == 0.0) {
blt(p1, p1 + 2, (char *) ep - (char *) (p1 + 2));
*np -= 2;
modified = true;
continue;
}
}
if ((p1 - 1)->level == level && (p1 - 1)->kind == CONSTANT && isinf((p1 - 1)->token.constant)) {
p2 = p1 - 1;
}
if (p2->level == level && p2->kind == CONSTANT && isinf(p2->token.constant)) {
flag = false;
for (p3 = p1;; p3--) {
if (p3->level < level) {
p3++;
break;
}
if (p3->kind == CONSTANT && p3 != p2 && !isfinite(p3->token.constant)) {
flag = true;
}
if (p3 == equation)
break;
}
for (p4 = p1; p4 < ep && p4->level >= level; p4++) {
if (p4->kind == CONSTANT && p4 != p2 && !isfinite(p4->token.constant)) {
flag = true;
}
}
if (!flag) { /* no other infinities on level */
if (p2 > p3 && (p2 - 1)->token.operatr == MINUS) {
p2->token.constant = -(p2->token.constant);
}
blt(p2 + 1, p4, (char *) ep - (char *) p4);
*np -= p4 - (p2 + 1);
ep = &equation[*np];
blt(p3, p2, (char *) ep - (char *) p2);
*np -= p2 - p3;
return true;
}
}
break;
}
p2 = p1 - 1;
switch (p1->token.operatr) {
case PLUS:
/* remove 0+ */
if (p2->level == level && p2->kind == CONSTANT && p2->token.constant == 0.0) {
blt(p2, p1 + 1, (char *) ep - (char *) (p1 + 1));
*np -= 2;
modified = true;
continue;
}
break;
case MINUS:
/* 0-x to (-1*x) */
if (p2->level == level && p2->kind == CONSTANT && p2->token.constant == 0.0) {
if (p2 == equation || (p2 - 1)->level < level) {
p2->token.constant = -1.0;
p1->token.operatr = TIMES;
binary_parenthesize(equation, *np, p1 - equation);
modified = true;
continue;
}
}
break;
case TIMES:
if (p2->level == level && p2->kind == CONSTANT) {
if (p2->token.constant == 0.0) {
/* Replace 0*x with 0. */
for (p2 = p1 + 2; p2 < ep; p2 += 2) {
if (p2->level < level)
break;
}
blt(p1, p2, (char *) ep - (char *) p2);
*np -= p2 - p1;
modified = true;
continue;
}
if (fabs(p2->token.constant - 1.0) <= epsilon) {
/* Replace 1*x with x. */
blt(p2, p1 + 1, (char *) ep - (char *) (p1 + 1));
*np -= 2;
modified = true;
continue;
}
}
if ((p1 + 1)->level == level && (p1 + 1)->kind == CONSTANT) {
/* Move any constant to the beginning of a multiplicative sub-expression. */
d = (p1 + 1)->token.constant;
for (p2 = p1 - 1; p2 > equation; p2--) {
if ((p2 - 1)->level < level)
break;
}
if (p2->level == level && p2->kind == CONSTANT) {
/* already a constant at the beginning, so don't move anything */
break;
}
blt(p2 + 2, p2, (char *) p1 - (char *) p2);
p2->level = level;
p2->kind = CONSTANT;
p2->token.constant = d;
(p2 + 1)->level = level;
(p2 + 1)->kind = OPERATOR;
(p2 + 1)->token.operatr = TIMES;
if (p2 > equation) {
p1 = p2 - 1;
} else {
p1 = equation + 1;
}
continue;
}
break;
case DIVIDE:
if (p2->level == level && p2->kind == CONSTANT && p2->token.constant == 0.0) {
/* Replace 0/x with 0. */
for (p2 = p1 + 2; p2 < ep; p2 += 2) {
if (p2->level < level)
break;
}
blt(p1, p2, (char *) ep - (char *) p2);
*np -= p2 - p1;
modified = true;
continue;
}
p2 = p1 + 1;
if (p2->level == level && p2->kind == CONSTANT) {
/* Replace division by a constant with times its reciprocal. */
f_to_fraction(p2->token.constant, &numerator, &denominator);
check_divide_by_zero(numerator);
p2->token.constant = denominator / numerator;
p1->token.operatr = TIMES;
continue;
}
if (p2->level == level && p2->kind == VARIABLE && (p2->token.variable & VAR_MASK) == SIGN) {
/* Replace division by a sign variable with times the sign variable. */
p1->token.operatr = TIMES;
continue;
}
break;
case MODULUS:
case IDIVIDE:
if (p2->level == level && p2->kind == CONSTANT && p2->token.constant == 0.0) {
/* Replace 0%x with 0. */
for (p2 = p1 + 2; p2 < ep; p2 += 2) {
if (p2->level < level)
break;
}
blt(p1, p2, (char *) ep - (char *) p2);
*np -= p2 - p1;
modified = true;
continue;
}
if (p1->token.operatr == MODULUS) {
if ((p1 + 1)->level == level && (p1 + 1)->kind == CONSTANT) {
d = fabs((p1 + 1)->token.constant);
if (d > epsilon && fmod(1.0 / d, 1.0) == 0.0) {
for (p2 = p1 - 1; p2 > equation; p2--) {
if ((p2 - 1)->level < level)
break;
}
if (is_integer_expr(p2, p1 - p2)) {
blt(p2, p1 + 1, (char *) ep - (char *) (p1 + 1));
*np -= (p1 + 1) - p2;
p2->token.constant = 0.0;
if (p2 > equation) {
p1 = p2 - 1;
} else {
p1 = equation + 1;
}
modified = true;
continue;
}
}
}
}
break;
case POWER:
if (p2->level == level && p2->kind == CONSTANT) {
if (p2->token.constant == 1.0) {
/* Replace 1^x with 1. */
for (p2 = p1 + 2; p2 < ep; p2 += 2) {
if (p2->level <= level)
break;
}
blt(p1, p2, (char *) ep - (char *) p2);
*np -= p2 - p1;
modified = true;
continue;
}
}
p2 = p1 + 1;
if (p2->level == level && p2->kind == CONSTANT) {
if (p2->token.constant == 0.0) {
/* Replace x^0 with 1. */
for (p2 = p1 - 1; p2 > equation; p2--) {
if ((p2 - 1)->level <= level)
break;
}
blt(p2, p1 + 1, (char *) ep - (char *) (p1 + 1));
*np -= (p1 + 1) - p2;
p2->token.constant = 1.0;
p1 = p2 + 1;
modified = true;
continue;
}
if (fabs(p2->token.constant - 1.0) <= epsilon) {
/* Replace x^1 with x. */
blt(p1, p1 + 2, (char *) ep - (char *) (p1 + 2));
*np -= 2;
modified = true;
continue;
}
}
break;
}
p1 += 2;
}
return modified;
}
/*
* Compare two sub-expressions for equality.
* This is quick and low level and does not simplify or modify the expressions.
*
* If equal, return true with *diff_signp = 0.
* if p1 * -1 == p2, return true with *diff_signp = 1.
* Otherwise return false.
*/
int
se_compare(p1, n1, p2, n2, diff_signp)
token_type *p1; /* first sub-expression pointer */
int n1; /* first sub-expression length */
token_type *p2; /* second sub-expression pointer */
int n2; /* second sub-expression length */
int *diff_signp; /* different sign flag pointer */
{
int l1, l2;
int rv;
#if DEBUG
int rv_should_be_false = false;
if (n1 < 1 || n2 < 1 || (n1 & 1) != 1 || (n2 & 1) != 1 || diff_signp == NULL || p1 == NULL || p2 == NULL) {
error_bug("Programming error in call to se_compare().");
}
#endif
if (((n1 > n2) ? ((n1 + 1) / (n2 + 1)) : ((n2 + 1) / (n1 + 1))) > 3) {
/* expressions are grossly different in size, no need to compare, they are different */
#if DEBUG
rv_should_be_false = true;
#else
*diff_signp = false;
return false;
#endif
}
/* Find the proper ground levels of parentheses for the two sub-expressions: */
l1 = min_level(p1, n1);
l2 = min_level(p2, n2);
rv = compare_recurse(p1, n1, l1, p2, n2, l2, diff_signp);
#if DEBUG
if (rv && rv_should_be_false) {
error_bug("Expression compare optimization failed in se_compare().");
}
#endif
return rv;
}
/*
* Recursively compare each parenthesized sub-expression.
* This is the most used function in Mathomatic.
* Optimizing or streamlining this would greatly speed things up.
*/
static int
compare_recurse(p1, n1, l1, p2, n2, l2, diff_signp)
token_type *p1;
int n1, l1;
token_type *p2;
int n2, l2, *diff_signp;
{
#define compare_epsilon epsilon
token_type *pv1, *ep1, *ep2;
int i, j;
int len;
int first;
int oc2; /* operand count 2 */
token_type *opa2[MAX_COMPARE_TERMS]; /* operand pointer array 2 */
char used[MAX_COMPARE_TERMS]; /* operand used flag array 2 */
int last_op1, op1 = 0, op2 = 0;
int diff_op = false;
double d1, c1, c2;
*diff_signp = false;
if (n1 == 1 && n2 == 1) {
if (p1->kind != p2->kind) {
return false;
}
switch (p1->kind) {
case VARIABLE:
if (sign_cmp_flag && (p1->token.variable & VAR_MASK) == SIGN) {
return((p2->token.variable & VAR_MASK) == SIGN);
} else {
return(p1->token.variable == p2->token.variable);
}
break;
case CONSTANT:
c1 = p1->token.constant;
c2 = p2->token.constant;
if (c1 == c2) {
return true;
} else if (c1 == -c2) {
*diff_signp = true;
return true;
}
d1 = fabs(c1) * compare_epsilon;
if (fabs(c1 - c2) < d1) {
return true;
}
if (fabs(c1 + c2) < d1) {
*diff_signp = true;
return true;
}
break;
case OPERATOR:
error_bug("Programming error in call to compare_recurse().");
break;
}
return false;
}
#if DEBUG
if (n1 < 1 || n2 < 1 || (n1 & 1) != 1 || (n2 & 1) != 1) {
error_bug("Programming error in call to compare_recurse().");
}
#endif
ep1 = &p1[n1];
ep2 = &p2[n2];
for (pv1 = p1 + 1; pv1 < ep1; pv1 += 2) {
if (pv1->level == l1) {
op1 = pv1->token.operatr;
break;
}
}
for (pv1 = p2 + 1; pv1 < ep2; pv1 += 2) {
if (pv1->level == l2) {
op2 = pv1->token.operatr;
break;
}
}
if (op2 == 0) {
if (op1 != TIMES && op1 != DIVIDE)
return false;
goto no_op2;
}
switch (op1) {
case PLUS:
case MINUS:
if (op2 != PLUS && op2 != MINUS)
diff_op = true;
break;
case 0:
if (op2 != TIMES && op2 != DIVIDE)
return false;
break;
case TIMES:
case DIVIDE:
if (op2 != TIMES && op2 != DIVIDE)
diff_op = true;
break;
default:
if (op2 != op1)
diff_op = true;
break;
}
if (diff_op) {
if (p1->kind == CONSTANT && p1->level == l1 && op1 == TIMES) {
if (fabs(fabs(p1->token.constant) - 1.0) <= compare_epsilon) {
if (!compare_recurse(p1 + 2, n1 - 2, min_level(p1 + 2, n1 - 2), p2, n2, l2, diff_signp)) {
return false;
}
if (p1->token.constant < 0.0) {
*diff_signp ^= true;
}
return true;
}
}
if (p2->kind == CONSTANT && p2->level == l2 && op2 == TIMES) {
if (fabs(fabs(p2->token.constant) - 1.0) <= compare_epsilon) {
if (!compare_recurse(p1, n1, l1, p2 + 2, n2 - 2, min_level(p2 + 2, n2 - 2), diff_signp)) {
return false;
}
if (p2->token.constant < 0.0) {
*diff_signp ^= true;
}
return true;
}
}
return false;
}
no_op2:
opa2[0] = p2;
used[0] = false;
oc2 = 1;
for (pv1 = p2 + 1; pv1 < ep2; pv1 += 2) {
if (pv1->level == l2) {
opa2[oc2] = pv1 + 1;
used[oc2] = false;
if (++oc2 >= ARR_CNT(opa2)) {
debug_string(1, "Expression too big to compare, because MAX_COMPARE_TERMS exceeded.");
return false;
}
}
}
opa2[oc2] = pv1 + 1;
last_op1 = 0;
first = true;
for (pv1 = p1;;) {
for (len = 1; &pv1[len] < ep1; len += 2)
if (pv1[len].level <= l1)
break;
for (i = 0;; i++) {
if (i >= oc2) {
if ((op1 == TIMES || op1 == DIVIDE) && pv1->level == l1 && pv1->kind == CONSTANT) {
if (fabs(fabs(pv1->token.constant) - 1.0) <= compare_epsilon) {
if (pv1->token.constant < 0.0) {
*diff_signp ^= true;
}
break;
}
}
return false;
}
if (used[i]) {
continue;
}
switch (op1) {
case PLUS:
case MINUS:
break;
case 0:
case TIMES:
case DIVIDE:
if ((last_op1 == DIVIDE) != ((i != 0)
&& ((opa2[i] - 1)->token.operatr == DIVIDE)))
continue;
break;
default:
if ((last_op1 == 0) != (i == 0))
return false;
break;
}
if (compare_recurse(pv1, len, (pv1->level <= l1) ? l1 : (l1 + 1),
opa2[i], (opa2[i+1] - opa2[i]) - 1, (opa2[i]->level <= l2) ? l2 : (l2 + 1), &j)) {
switch (op1) {
case 0:
case TIMES:
case DIVIDE:
*diff_signp ^= j;
break;
case PLUS:
case MINUS:
if (last_op1 == MINUS)
j = !j;
if (i != 0 && (opa2[i] - 1)->token.operatr == MINUS)
j = !j;
if (!first) {
if (*diff_signp != j)
continue;
} else {
*diff_signp = j;
first = false;
}
break;
/* case POWER:
Someday fix so that (x-y)^6 compares identical to (y-x)^6.
Also (x-y)^5 should compare identical with different sign to (y-x)^5.
*/
default:
if (j)
continue;
break;
}
used[i] = true;
break;
}
}
pv1 += len;
if (pv1 >= ep1)
break;
last_op1 = pv1->token.operatr;
pv1++;
}
for (i = 0; i < oc2; i++) {
if (!used[i]) {
if ((op2 == TIMES || op2 == DIVIDE) && opa2[i]->level == l2 && opa2[i]->kind == CONSTANT) {
if (fabs(fabs(opa2[i]->token.constant) - 1.0) <= compare_epsilon) {
if (opa2[i]->token.constant < 0.0) {
*diff_signp ^= true;
}
continue;
}
}
return false;
}
}
return true;
}
/*
* Take out meaningless "sign" variables and negative constants.
* Simplify imaginary numbers raised to the power of some constants.
*
* Return true if equation side was modified.
*/
int
elim_sign(equation, np)
token_type *equation;
int *np;
{
int i, j, k;
int level;
int modified = false;
int op;
double d;
double numerator, denominator;
for (i = 1; i < *np; i += 2) {
#if DEBUG
if (equation[i].kind != OPERATOR) {
error_bug("Error in elim_sign().");
}
#endif
level = equation[i].level;
if (equation[i+1].kind == CONSTANT
&& equation[i].token.operatr == POWER
&& ((equation[i+1].level == level)
|| (equation[i+1].level == level + 1))) {
if (equation[i+1].level == level + 1) {
if (i + 3 >= *np || equation[i+2].token.operatr != TIMES)
continue;
for (k = i + 2; k < *np && equation[k].level >= (level + 1); k += 2)
;
if (k <= i + 2)
continue;
if (!is_integer_expr(&equation[i+3], k - (i + 3)))
continue;
}
f_to_fraction(equation[i+1].token.constant, &numerator, &denominator);
if (always_positive(numerator)) {
if (equation[i-1].level == level
&& equation[i-1].kind == VARIABLE
&& equation[i-1].token.variable == IMAGINARY) {
equation[i-1].kind = CONSTANT;
equation[i-1].token.constant = -1.0;
equation[i+1].token.constant /= 2.0;
modified = true;
continue;
}
op = 0;
for (j = i - 1; (j >= 0) && equation[j].level >= level; j--) {
if (equation[j].level <= level + 1) {
if (equation[j].kind == OPERATOR) {
op = equation[j].token.operatr;
break;
}
}
}
switch (op) {
case 0:
case TIMES:
case DIVIDE:
for (j = i - 1; (j >= 0) && equation[j].level >= level; j--) {
if (equation[j].level <= level + 1) {
if (equation[j].kind == VARIABLE
&& (equation[j].token.variable & VAR_MASK) == SIGN) {
equation[j].kind = CONSTANT;
equation[j].token.constant = 1.0;
modified = true;
} else if (equation[j].kind == CONSTANT
&& equation[j].token.constant < 0.0) {
equation[j].token.constant = -equation[j].token.constant;
modified = true;
}
}
}
}
} else {
if (equation[i-1].level == level && equation[i-1].kind == VARIABLE) {
if (equation[i-1].token.variable == IMAGINARY && equation[i+1].level == level) {
d = fmod(equation[i+1].token.constant, 4.0);
if (d == 1.0) {
equation[i].token.operatr = TIMES;
equation[i+1].token.constant = 1.0;
modified = true;
} else if (d == 3.0) {
equation[i].token.operatr = TIMES;
equation[i+1].token.constant = -1.0;
modified = true;
}
} else if ((equation[i-1].token.variable & VAR_MASK) == SIGN) {
if (fmod(denominator, 2.0) == 1.0) {
/* odd root, make root (denominator) 1 */
numerator = fmod(numerator, 2.0);
/* all sign^2 now translate to 1 */
if (numerator != equation[i+1].token.constant) {
equation[i+1].token.constant = numerator;
modified = true;
}
}
}
}
}
}
}
return modified;
}
/*
* Do complex number division and move the imaginary number from the denominator to the numerator.
* This is done by multiplying the numerator and denominator by
* the conjugate of the complex number in the denominator.
* This often complicates expressions, so use with care.
*
* Includes simple division (1/i# -> -1*i#) conversions now.
*
* Return true if equation side was modified.
*/
int
div_imaginary(equation, np)
token_type *equation;
int *np;
{
int i, j, k;
int n;
int level;
int ilevel;
int op;
int iloc, biloc, eiloc;
int eloc;
int modified = false;
for (i = 1; i < *np; i += 2) {
#if DEBUG
if (equation[i].kind != OPERATOR) {
error_bug("Error in div_imaginary().");
}
#endif
if (equation[i].token.operatr == DIVIDE) {
level = equation[i].level;
#if 1 /* This necessary code makes complex number calculations give different (maybe wrong) results. */
/* It converts x/i to x*-1*i. Might be better to do this only when symb_flag is true. */
if (equation[i+1].level == level
&& equation[i+1].kind == VARIABLE
&& equation[i+1].token.variable == IMAGINARY) {
if (*np + 2 > n_tokens) {
error_huge();
}
blt(&equation[i+2], &equation[i], (*np - i) * sizeof(token_type));
*np += 2;
equation[i].level = level;
equation[i].kind = OPERATOR;
equation[i].token.operatr = TIMES;
i++;
equation[i].level = level;
equation[i].kind = CONSTANT;
equation[i].token.constant = -1.0;
i++;
equation[i].level = level;
equation[i].kind = OPERATOR;
equation[i].token.operatr = TIMES;
modified = true;
continue;
}
#endif
op = 0;
iloc = biloc = eiloc = -1;
k = i;
for (j = i + 1; j < *np && equation[j].level > level; j++) {
if (equation[j].kind == OPERATOR && equation[j].level == level + 1) {
op = equation[j].token.operatr;
k = j;
if (iloc >= 0 && eiloc < 0) {
eiloc = j;
}
} else if (equation[j].kind == VARIABLE && equation[j].token.variable == IMAGINARY) {
if (iloc >= 0) {
op = 0;
break;
}
iloc = j;
biloc = k + 1;
}
}
eloc = j;
if (iloc >= 0 && eiloc < 0) {
eiloc = j;
}
if (iloc < 0 || (op != PLUS && op != MINUS))
continue;
ilevel = equation[iloc].level;
if (ilevel != level + 1) {
if (ilevel != level + 2) {
continue;
}
if (iloc > biloc && equation[iloc-1].token.operatr != TIMES)
continue;
if (iloc + 1 < eiloc) {
switch (equation[iloc+1].token.operatr) {
case TIMES:
case DIVIDE:
break;
default:
continue;
}
}
}
if ((eloc - (i + 1)) + 5 + (eiloc - biloc) + *np + 2 > n_tokens)
error_huge();
n = eloc - (i + 1);
blt(scratch, &equation[i+1], n * sizeof(token_type));
scratch[iloc-(i+1)].kind = CONSTANT;
scratch[iloc-(i+1)].token.constant = 0.0;
for (j = 0; j < n; j++)
scratch[j].level += 2;
scratch[n].level = level + 2;
scratch[n].kind = OPERATOR;
scratch[n].token.operatr = POWER;
n++;
scratch[n].level = level + 2;
scratch[n].kind = CONSTANT;
scratch[n].token.constant = 2.0;
n++;
scratch[n].level = level + 1;
scratch[n].kind = OPERATOR;
scratch[n].token.operatr = PLUS;
n++;
blt(&scratch[n], &equation[biloc], (eiloc - biloc) * sizeof(token_type));
j = n;
n += (eiloc - biloc);
for (k = j; k < n; k++)
scratch[k].level += 2;
scratch[n].level = level + 2;
scratch[n].kind = OPERATOR;
scratch[n].token.operatr = POWER;
n++;
scratch[n].level = level + 2;
scratch[n].kind = CONSTANT;
scratch[n].token.constant = 2.0;
n++;
scratch[j+(iloc-biloc)].kind = CONSTANT;
scratch[j+(iloc-biloc)].token.constant = 1.0;
blt(&equation[iloc+2], &equation[iloc], (*np - iloc) * sizeof(token_type));
*np += 2;
ilevel++;
equation[iloc].level = ilevel;
equation[iloc].kind = CONSTANT;
equation[iloc].token.constant = -1.0;
iloc++;
equation[iloc].level = ilevel;
equation[iloc].kind = OPERATOR;
equation[iloc].token.operatr = TIMES;
iloc++;
equation[iloc].level = ilevel;
blt(&equation[i+1+n], &equation[i], (*np - i) * sizeof(token_type));
*np += n + 1;
blt(&equation[i+1], scratch, n * sizeof(token_type));
i += n + 1;
equation[i].token.operatr = TIMES;
modified = true;
}
}
return modified;
}
/*
* Convert 1/m*(-1*b+y) to (y-b)/m in equation side.
*
* Returns true if equation side was modified.
* "elim_k()" should be called after this if it returns true.
*
* This routine also checks the validity of the equation side.
*/
int
reorder(equation, np)
token_type *equation;
int *np;
{
return(order_recurse(equation, np, 0, 1));
}
static void
swap(equation, np, level, i1, i2)
token_type *equation;
int *np;
int level;
int i1, i2;
{
int e1, e2;
int n1, n2;
for (e1 = i1 + 1;; e1 += 2) {
if (e1 >= *np || equation[e1].level <= level)
break;
}
for (e2 = i2 + 1;; e2 += 2) {
if (e2 >= *np || equation[e2].level <= level)
break;
}
n1 = e1 - i1;
n2 = e2 - i2;
blt(scratch, &equation[i1], (e2 - i1) * sizeof(token_type));
if ((i1 + n2) != e1) {
blt(&equation[i1+n2], &equation[e1], (i2 - e1) * sizeof(token_type));
}
blt(&equation[i1], &scratch[i2-i1], n2 * sizeof(token_type));
blt(&equation[e2-n1], scratch, n1 * sizeof(token_type));
}
/*
* Recursively check and possibly reorder a "level" sub-expression
* which starts at "loc" in an equation side.
*/
static int
order_recurse(equation, np, loc, level)
token_type *equation;
int *np, loc, level;
{
int i, j, k, n;
int op = 0;
int modified = false;
/* check passed sub-expression for validity: */
if ((loc & 1) != 0) {
goto corrupt;
}
for (i = loc; i < *np;) {
if (equation[i].level < level) {
if (equation[i].kind != OPERATOR || equation[i].level < 1) {
goto corrupt;
}
break;
}
if (equation[i].level > level) {
modified |= order_recurse(equation, np, i, level + 1);
i++;
for (; i < *np && equation[i].level > level; i++)
;
continue;
} else {
if (equation[i].kind == OPERATOR) {
if ((i & 1) == 0 || equation[i].token.operatr == 0) {
goto corrupt;
}
if (op) {
switch (equation[i].token.operatr) {
case PLUS:
case MINUS:
if (op == PLUS || op == MINUS)
break;
goto corrupt;
case TIMES:
case DIVIDE:
if (op == TIMES || op == DIVIDE)
break;
default:
goto corrupt;
}
} else {
op = equation[i].token.operatr;
}
} else {
if ((i & 1) != 0)
goto corrupt;
}
}
i++;
}
if ((i & 1) == 0) { /* "i" should be at the end of the current sub-expression */
goto corrupt;
}
/* reorder sub-expression if needed: */
switch (op) {
case PLUS:
case MINUS:
if (equation[loc].kind == CONSTANT && equation[loc].token.constant < 0.0) {
if (equation[loc].level == level || (equation[loc+1].level == level + 1
&& (equation[loc+1].token.operatr == TIMES || equation[loc+1].token.operatr == DIVIDE))) {
for (j = loc + 1; j < i; j += 2) {
if (equation[j].level == level && equation[j].token.operatr == PLUS) {
swap(equation, np, level, loc, j + 1);
modified = true;
break;
}
}
}
}
break;
case TIMES:
case DIVIDE:
for (j = loc + 1;; j += 2) {
if (j >= i)
return modified;
if (equation[j].level == level && equation[j].token.operatr == DIVIDE)
break;
}
for (k = j + 2; k < i;) {
if (equation[k].level == level && equation[k].token.operatr == TIMES) {
for (n = k + 2; n < i && equation[n].level > level; n += 2)
;
n -= k;
blt(scratch, &equation[k], n * sizeof(token_type));
blt(&equation[j+n], &equation[j], (k - j) * sizeof(token_type));
blt(&equation[j], scratch, n * sizeof(token_type));
j += n;
k += n;
modified = true;
continue;
}
k += 2;
}
break;
}
return modified;
corrupt:
error_bug("Internal representation of expression is corrupt!");
return modified; /* not reached */
}
/*
* Try to rationalize the denominator of algebraic fractions.
* Only works with a square root in the denominator
* and sometimes helps with simplification.
*
* Returns true if something was done.
* Unfactoring needs to be done immediately, if this returns true.
*/
int
rationalize(equation, np)
token_type *equation;
int *np;
{
int i, j, k;
int i1, k1;
int div_level;
int end_loc, neg_one_loc = -1;
int flag;
int modified = false;
int count;
for (i = 1;; i += 2) {
be_thorough:
if (i >= *np)
break;
#if DEBUG
if (equation[i].kind != OPERATOR) {
error_bug("Bug in rationalize().");
}
#endif
if (equation[i].token.operatr == DIVIDE) {
div_level = equation[i].level;
count = 0;
j = -1;
for (end_loc = i + 2; end_loc < *np && equation[end_loc].level > div_level; end_loc += 2) {
if (equation[end_loc].level == (div_level + 1)) {
count++;
if (j < 0) {
j = end_loc;
}
}
}
if (j < 0)
continue;
switch (equation[j].token.operatr) {
case PLUS:
case MINUS:
break;
default:
continue;
}
i1 = i;
do_again:
flag = false;
for (k = j - 2; k > i1; k -= 2) {
if (equation[k].level == (div_level + 2)) {
switch (equation[k].token.operatr) {
case TIMES:
case DIVIDE:
flag = 1;
break;
case POWER:
flag = 2;
break;
}
break;
}
}
if (flag) {
for (k = j - 2; k > i1; k -= 2) {
if ((equation[k].level == (div_level + 2)
|| (equation[k].level == (div_level + 3) && flag == 1))
&& equation[k].token.operatr == POWER
&& equation[k].level == equation[k+1].level
&& equation[k+1].kind == CONSTANT
&& fmod(equation[k+1].token.constant, 1.0) == 0.5) {
for (k1 = i + 2; k1 < end_loc; k1 += 2) {
if (equation[k1].token.operatr == POWER
&& equation[k1].level == equation[k1+1].level
&& equation[k1+1].kind == CONSTANT
&& fmod(equation[k1+1].token.constant, 1.0) == 0.5) {
/* make sure we will actually be eliminating ^.5 from the denominator: */
if (k != k1 && !(equation[k1].level == (div_level + 2) && count == 1)) {
i += 2;
goto be_thorough;
}
/* avoid rationalizing absolute values: */
if (equation[k1-1].level == (equation[k1].level + 1)
&& equation[k1-2].level == equation[k1-1].level
&& equation[k1-1].kind == CONSTANT
&& equation[k1-2].token.operatr == POWER) {
i += 2;
goto be_thorough;
}
}
}
neg_one_loc = i1 + 1;
k = i1 - i;
blt(scratch, &equation[i+1], k * sizeof(token_type));
scratch[k].level = div_level + 2;
scratch[k].kind = CONSTANT;
scratch[k].token.constant = -1.0;
k++;
scratch[k].level = div_level + 2;
scratch[k].kind = OPERATOR;
scratch[k].token.operatr = TIMES;
k++;
blt(&scratch[k], &equation[neg_one_loc], (end_loc - neg_one_loc) * sizeof(token_type));
for (k1 = 0; k1 < (j - neg_one_loc); k1++, k++)
scratch[k].level++;
k = end_loc - (i + 1) + 2;
if (*np + 2 * (k + 1) > n_tokens) {
error_huge();
}
blt(&equation[end_loc+(2*(k+1))], &equation[end_loc], (*np - end_loc) * sizeof(token_type));
*np += 2 * (k + 1);
k1 = end_loc;
equation[k1].level = div_level;
equation[k1].kind = OPERATOR;
equation[k1].token.operatr = TIMES;
k1++;
blt(&equation[k1], scratch, k * sizeof(token_type));
k1 += k;
equation[k1].level = div_level;
equation[k1].kind = OPERATOR;
equation[k1].token.operatr = DIVIDE;
k1++;
blt(&equation[k1], scratch, k * sizeof(token_type));
k1 += k;
debug_string(1, "Square roots in denominator rationalized:");
side_debug(1, &equation[i+1], k1 - (i + 1));
i = k1;
modified = true;
goto be_thorough;
}
}
}
if (j >= end_loc)
continue;
i1 = j;
for (j += 2; j < end_loc; j += 2) {
if (equation[j].level == (div_level + 1)) {
break;
}
}
goto do_again;
}
}
return modified;
}