mathomatic/gcd.c

469 lines
14 KiB
C

/*
* General floating point GCD routine and associated code for Mathomatic.
* These routines are magically tuned to always give good results,
* even though floating point is used.
* Use of this code in other floating point programs that need a gcd() or
* double-to-fraction convert function is recommended.
* It is heavily tested through extensive use in this computer algebra system.
*
* Copyright (C) 1987-2012 George Gesslein II.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
The chief copyright holder can be contacted at gesslein@mathomatic.org, or
George Gesslein II, P.O. Box 224, Lansing, NY 14882-0224 USA.
*/
#include "includes.h"
/*
* Floating point GCD function.
*
* Returns the Greatest Common Divisor (GCD) of doubles d1 and d2,
* by using the Euclidean GCD algorithm.
*
* The GCD is defined as the largest positive number that evenly divides both d1 and d2.
* This should always works perfectly and exactly with two integers up to MAX_K_INTEGER.
* Will usually work with non-integers, but there may be some floating point error.
*
* Returns 0 on failure, otherwise returns the positive GCD.
*/
double
gcd(d1, d2)
double d1, d2;
{
int count;
double larger, divisor, remainder1, lower_limit;
if (!isfinite(d1) || !isfinite(d2)) {
return 0.0; /* operands must be finite */
}
d1 = fabs(d1);
d2 = fabs(d2);
#if 1 /* true for standard gcd(), otherwise returns 0 (failure) if either parameter is 0 */
if (d1 == 0)
return d2;
if (d2 == 0)
return d1;
#endif
if (d1 > d2) {
larger = d1;
divisor = d2;
} else {
larger = d2;
divisor = d1;
}
lower_limit = larger * epsilon;
if (divisor <= lower_limit || larger >= MAX_K_INTEGER) {
return 0.0; /* out of range, result would be too inaccurate */
}
for (count = 1; count < 50; count++) {
remainder1 = fabs(fmod(larger, divisor));
if (remainder1 <= lower_limit || fabs(divisor - remainder1) <= lower_limit) {
if (remainder1 != 0.0 && divisor <= (100.0 * lower_limit))
return 0.0;
return divisor;
}
larger = divisor;
divisor = remainder1;
}
return 0.0;
}
/*
* Verified floating point GCD function.
*
* Returns the verified exact Greatest Common Divisor (GCD) of doubles d1 and d2.
*
* Returns 0 on failure or inexactness, otherwise returns the verified positive GCD result.
* Result is not necessarily integer unless both d1 and d2 are integer.
*/
double
gcd_verified(d1, d2)
double d1, d2;
{
double divisor, d3, d4;
divisor = gcd(d1, d2);
if (divisor != 0.0) {
d3 = d1 / divisor;
d4 = d2 / divisor;
if (fmod(d3, 1.0) != 0.0 || fmod(d4, 1.0) != 0.0)
return 0.0;
if (gcd(d3, d4) != 1.0)
return 0.0;
}
return divisor;
}
/*
* Floating point round function.
*
* Returns the passed floating point double rounded to the nearest integer.
*/
double
my_round(d1)
double d1; /* value to round */
{
if (d1 >= 0.0) {
modf(d1 + 0.5, &d1);
} else {
modf(d1 - 0.5, &d1);
}
return d1;
}
/*
* Convert the passed double d to an equivalent fully reduced fraction.
* This done by the following simple algorithm:
*
* divisor = gcd(d, 1.0)
* numerator = d / divisor
* denominator = 1.0 / divisor
*
* Returns true with integers in numerator and denominator
* if conversion to a fraction was successful.
* Otherwise returns false with numerator = d and denominator = 1.0
*
* True return indicates d is rational and finite, otherwise d is probably irrational.
*/
int
f_to_fraction(d, numeratorp, denominatorp)
double d; /* floating point number to convert */
double *numeratorp; /* returned numerator */
double *denominatorp; /* returned denominator */
{
double divisor;
double numerator, denominator;
double k3, k4;
*numeratorp = d;
*denominatorp = 1.0;
if (!isfinite(d)) {
return false;
}
/* see if "d" is an integer, or very close to an integer: */
if (fmod(d, 1.0) == 0.0) {
/* d is an integer */
return true;
}
/* more than 15 digits in number means we do nothing (for better accuracy) */
if (fabs(d) >= MAX_K_INTEGER)
return false;
k3 = fabs(d) * small_epsilon;
if (k3 >= .5)
return false; /* fixes "factor number 17!" to give error instead of wrong answer */
k4 = my_round(d);
if (k4 != 0.0 && fabs(k4 - d) <= k3) {
/* very close to an integer, make it so (allows gamma() based factorial function to work properly, etc.) */
*numeratorp = k4;
return true;
}
/* try to convert non-integer floating point value in "d" to a fraction: */
if ((divisor = gcd(1.0, d)) > epsilon) {
numerator = my_round(d / divisor);
denominator = my_round(1.0 / divisor);
/* don't allow more than 11 digits in the numerator or denominator: */
if (fabs(numerator) >= 1.0e12)
return false;
if (denominator >= 1.0e12 || denominator < 2.0)
return false;
/* make sure the result is a fully reduced fraction: */
divisor = gcd(numerator, denominator);
if (divisor > 1.0) { /* just in case result isn't already fully reduced */
numerator /= divisor;
denominator /= divisor;
}
k3 = (numerator / denominator);
if (fabs(k3 - d) > (small_epsilon * fabs(k3))) {
return false; /* result is too inaccurate */
}
if (fmod(numerator, 1.0) != 0.0 || fmod(denominator, 1.0) != 0.0) {
/* Shouldn't happen if everything works. */
#if DEBUG
error_bug("Fraction should have been fully reduced by gcd(), but was not.");
#endif
return false;
}
/* numerator and denominator are guaranteed integral */
*numeratorp = numerator;
*denominatorp = denominator;
return true;
}
return false;
}
/*
* Call make_simple_fractions() or make_mixed_fractions() below,
* depending on the current fractions display mode.
*
* Returns true if any fractions were created.
*/
int
make_fractions(equation, np)
token_type *equation; /* equation side pointer */
int *np; /* pointer to length of equation side */
{
switch (fractions_display) {
case 2:
return make_mixed_fractions(equation, np);
break;
default:
return make_simple_fractions(equation, np);
break;
}
}
/*
* Convert all non-integer constants in an equation side to simple, fully reduced fractions,
* when exactly equal to a fraction without a very large numerator or denominator.
* Uses f_to_fraction() above, which limits the numerator and denominator to 11 digits each.
* The floating point gcd() function used limits the complexity of fractions further.
*
* Returns true if any fractions were created.
*/
int
make_simple_fractions(equation, np)
token_type *equation; /* equation side pointer */
int *np; /* pointer to length of equation side */
{
int i, j, k;
int level;
double numerator, denominator;
int inc_level, modified = false;
for (i = 0; i < *np; i += 2) {
if (equation[i].kind == CONSTANT) {
level = equation[i].level;
if (i > 0 && equation[i-1].level == level && (equation[i-1].token.operatr == DIVIDE /* || equation[i-1].token.operatr == POWER */))
continue;
if (!f_to_fraction(equation[i].token.constant, &numerator, &denominator))
continue;
if (denominator == 1.0) {
equation[i].token.constant = numerator;
continue;
}
if ((*np + 2) > n_tokens) {
error_huge();
}
modified = true;
inc_level = (*np > 1);
if ((i + 1) < *np && equation[i+1].level == level) {
switch (equation[i+1].token.operatr) {
case TIMES:
for (j = i + 3; j < *np && equation[j].level >= level; j += 2) {
if (equation[j].level == level && equation[j].token.operatr == DIVIDE) {
break;
}
}
if (numerator == 1.0) {
blt(&equation[i], &equation[i+2], (j - (i + 2)) * sizeof(token_type));
j -= 2;
} else {
equation[i].token.constant = numerator;
blt(&equation[j+2], &equation[j], (*np - j) * sizeof(token_type));
*np += 2;
}
equation[j].level = level;
equation[j].kind = OPERATOR;
equation[j].token.operatr = DIVIDE;
j++;
equation[j].level = level;
equation[j].kind = CONSTANT;
equation[j].token.constant = denominator;
if (numerator == 1.0) {
i -= 2;
}
continue;
case DIVIDE:
inc_level = false;
break;
}
}
j = i;
blt(&equation[i+3], &equation[i+1], (*np - (i + 1)) * sizeof(token_type));
*np += 2;
equation[j].token.constant = numerator;
j++;
equation[j].level = level;
equation[j].kind = OPERATOR;
equation[j].token.operatr = DIVIDE;
j++;
equation[j].level = level;
equation[j].kind = CONSTANT;
equation[j].token.constant = denominator;
if (inc_level) {
for (k = i; k <= j; k++)
equation[k].level++;
}
}
}
return modified;
}
/*
* Convert all non-integer constants in an equation side to mixed, fully reduced fractions,
* when exactly equal to a fraction without a very large numerator or denominator.
* A mixed fraction is an expression like (2 + (1/4)),
* which is equal to the simple fraction 9/4.
* If you only want simple fractions, use make_simple_fractions() above.
*
* Returns true if any fractions were created.
*/
int
make_mixed_fractions(equation, np)
token_type *equation; /* equation side pointer */
int *np; /* pointer to length of equation side */
{
int i, j, k;
int level;
double numerator, denominator, quotient1, remainder1;
int inc_level, modified = false;
for (i = 0; i < *np; i += 2) {
if (equation[i].kind == CONSTANT) {
level = equation[i].level;
if (i > 0 && equation[i-1].level == level && (equation[i-1].token.operatr == DIVIDE /* || equation[i-1].token.operatr == POWER */))
continue;
if (!f_to_fraction(equation[i].token.constant, &numerator, &denominator))
continue;
if (denominator == 1.0) {
equation[i].token.constant = numerator;
continue;
}
modified = true;
if (fabs(numerator) > denominator) {
remainder1 = modf(fabs(numerator) / denominator, &quotient1);
remainder1 = my_round(remainder1 * denominator);
if (numerator < 0.0) {
if ((*np + 6) > n_tokens) {
error_huge();
}
blt(&equation[i+7], &equation[i+1], (*np - (i + 1)) * sizeof(token_type));
*np += 6;
equation[i].level = level + 1;
equation[i].token.constant = -1.0;
i++;
equation[i].level = level + 1;
equation[i].kind = OPERATOR;
equation[i].token.operatr = TIMES;
i++;
equation[i].level = level + 2;
equation[i].kind = CONSTANT;
equation[i].token.constant = quotient1;
i++;
equation[i].level = level + 2;
equation[i].kind = OPERATOR;
equation[i].token.operatr = PLUS;
i++;
equation[i].level = level + 3;
equation[i].kind = CONSTANT;
equation[i].token.constant = remainder1;
i++;
equation[i].level = level + 3;
equation[i].kind = OPERATOR;
equation[i].token.operatr = DIVIDE;
i++;
equation[i].level = level + 3;
equation[i].kind = CONSTANT;
equation[i].token.constant = denominator;
} else {
if ((*np + 4) > n_tokens) {
error_huge();
}
blt(&equation[i+5], &equation[i+1], (*np - (i + 1)) * sizeof(token_type));
*np += 4;
equation[i].level = level + 1;
equation[i].token.constant = quotient1;
i++;
equation[i].level = level + 1;
equation[i].kind = OPERATOR;
equation[i].token.operatr = PLUS;
i++;
equation[i].level = level + 2;
equation[i].kind = CONSTANT;
equation[i].token.constant = remainder1;
i++;
equation[i].level = level + 2;
equation[i].kind = OPERATOR;
equation[i].token.operatr = DIVIDE;
i++;
equation[i].level = level + 2;
equation[i].kind = CONSTANT;
equation[i].token.constant = denominator;
}
} else {
if ((*np + 2) > n_tokens) {
error_huge();
}
inc_level = (*np > 1);
if ((i + 1) < *np && equation[i+1].level == level) {
switch (equation[i+1].token.operatr) {
case TIMES:
for (j = i + 3; j < *np && equation[j].level >= level; j += 2) {
if (equation[j].level == level && equation[j].token.operatr == DIVIDE) {
break;
}
}
if (numerator == 1.0) {
blt(&equation[i], &equation[i+2], (j - (i + 2)) * sizeof(token_type));
j -= 2;
} else {
equation[i].token.constant = numerator;
blt(&equation[j+2], &equation[j], (*np - j) * sizeof(token_type));
*np += 2;
}
equation[j].level = level;
equation[j].kind = OPERATOR;
equation[j].token.operatr = DIVIDE;
j++;
equation[j].level = level;
equation[j].kind = CONSTANT;
equation[j].token.constant = denominator;
if (numerator == 1.0) {
i -= 2;
}
continue;
case DIVIDE:
inc_level = false;
break;
}
}
j = i;
blt(&equation[i+3], &equation[i+1], (*np - (i + 1)) * sizeof(token_type));
*np += 2;
equation[j].token.constant = numerator;
j++;
equation[j].level = level;
equation[j].kind = OPERATOR;
equation[j].token.operatr = DIVIDE;
j++;
equation[j].level = level;
equation[j].kind = CONSTANT;
equation[j].token.constant = denominator;
if (inc_level) {
for (k = i; k <= j; k++)
equation[k].level++;
}
}
}
}
if (modified) {
organize(equation, np);
}
return modified;
}